Pawittra Phookaew, Ya Ma, Takaomi Suzuki, Sara Christina Stolze, Anne Harzen, Ryosuke Sano, Hirofumi Nakagami, Taku Demura, Misato Ohtani
{"title":"Active protein ubiquitination regulates xylem vessel functionality.","authors":"Pawittra Phookaew, Ya Ma, Takaomi Suzuki, Sara Christina Stolze, Anne Harzen, Ryosuke Sano, Hirofumi Nakagami, Taku Demura, Misato Ohtani","doi":"10.1093/plcell/koae221","DOIUrl":null,"url":null,"abstract":"<p><p>Xylem vessels function in the long-distance conduction of water in land plants. The NAC transcription factor VASCULAR-RELATED NAC-DOMAIN7 (VND7) is a master regulator of xylem vessel cell differentiation in Arabidopsis (Arabidopsis thaliana). We previously isolated suppressor of ectopic xylem vessel cell differentiation induced by VND7 (seiv) mutants. Here, we report that the responsible genes for seiv3, seiv4, seiv6, and seiv9 are protein ubiquitination-related genes encoding PLANT U-BOX46 (PUB46), an uncharacterized F-BOX protein (FBX), PUB36, and UBIQUITIN-SPECIFIC PROTEASE1 (UBP1), respectively. We also found decreased expression of genes downstream of VND7 and abnormal xylem transport activity in the seiv mutants. Upon VND7 induction, ubiquitination levels from 492 and 180 protein groups were upregulated and downregulated, respectively. VND7 induction resulted in the ubiquitination of proteins for cell wall biosynthesis and protein transport, whereas such active protein ubiquitination did not occur in the seiv mutants. We detected the ubiquitination of three lysine residues in VND7: K94, K105, and K260. Substituting K94 with arginine significantly decreased the transactivation activity of VND7, suggesting that the ubiquitination of K94 is crucial for regulating VND7 activity. Our findings highlight the crucial roles of target protein ubiquitination in regulating xylem vessel activity.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":null,"pages":null},"PeriodicalIF":10.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371170/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plcell/koae221","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Xylem vessels function in the long-distance conduction of water in land plants. The NAC transcription factor VASCULAR-RELATED NAC-DOMAIN7 (VND7) is a master regulator of xylem vessel cell differentiation in Arabidopsis (Arabidopsis thaliana). We previously isolated suppressor of ectopic xylem vessel cell differentiation induced by VND7 (seiv) mutants. Here, we report that the responsible genes for seiv3, seiv4, seiv6, and seiv9 are protein ubiquitination-related genes encoding PLANT U-BOX46 (PUB46), an uncharacterized F-BOX protein (FBX), PUB36, and UBIQUITIN-SPECIFIC PROTEASE1 (UBP1), respectively. We also found decreased expression of genes downstream of VND7 and abnormal xylem transport activity in the seiv mutants. Upon VND7 induction, ubiquitination levels from 492 and 180 protein groups were upregulated and downregulated, respectively. VND7 induction resulted in the ubiquitination of proteins for cell wall biosynthesis and protein transport, whereas such active protein ubiquitination did not occur in the seiv mutants. We detected the ubiquitination of three lysine residues in VND7: K94, K105, and K260. Substituting K94 with arginine significantly decreased the transactivation activity of VND7, suggesting that the ubiquitination of K94 is crucial for regulating VND7 activity. Our findings highlight the crucial roles of target protein ubiquitination in regulating xylem vessel activity.
期刊介绍:
Title: Plant Cell
Publisher:
Published monthly by the American Society of Plant Biologists (ASPB)
Produced by Sheridan Journal Services, Waterbury, VT
History and Impact:
Established in 1989
Within three years of publication, ranked first in impact among journals in plant sciences
Maintains high standard of excellence
Scope:
Publishes novel research of special significance in plant biology
Focus areas include cellular biology, molecular biology, biochemistry, genetics, development, and evolution
Primary criteria: articles provide new insight of broad interest to plant biologists and are suitable for a wide audience
Tenets:
Publish the most exciting, cutting-edge research in plant cellular and molecular biology
Provide rapid turnaround time for reviewing and publishing research papers
Ensure highest quality reproduction of data
Feature interactive format for commentaries, opinion pieces, and exchange of information in review articles, meeting reports, and insightful overviews.