{"title":"Cytotoxic evaluation of pure and doped iron oxide nanoparticles on cancer cells: a magnetic fluid hyperthermia perspective.","authors":"Dharti Bhadla, Kinnari Parekh, Neeraj Jain","doi":"10.1080/17435390.2024.2386019","DOIUrl":null,"url":null,"abstract":"<p><p>The need of the hour with respect to cancer treatment is a targeted approach with minimal or nil ramifications. Apropos, magnetic fluid hyperthermia (MFH) is emerging as a potential therapeutic strategy with anticipated reduced side effects for solid tumors. MFH causes cytotoxicity due to the heat generated owing to Hysteresis, Neel, and Brownian relaxation losses once magnetic nanoparticles (MNPs) carrying cancer cells are placed under an alternating magnetic field. With respect to MFH, iron oxide-based MNPs have been most extensively studied to date compared to other metal oxides with magnetic properties. The effectiveness of MFH relies on the composition, coating, size, physical and biocompatible properties of the MNPs. Pure iron oxide and doped iron oxide MNPs have been utilized to study their effects on cancer cell killing through MFH. This review evaluates the biocompatibility of pure and doped iron oxide MNPs and their subsequent hyperthermic effect for effectively killing cancer cells in vitro and in vivo.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"464-478"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17435390.2024.2386019","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The need of the hour with respect to cancer treatment is a targeted approach with minimal or nil ramifications. Apropos, magnetic fluid hyperthermia (MFH) is emerging as a potential therapeutic strategy with anticipated reduced side effects for solid tumors. MFH causes cytotoxicity due to the heat generated owing to Hysteresis, Neel, and Brownian relaxation losses once magnetic nanoparticles (MNPs) carrying cancer cells are placed under an alternating magnetic field. With respect to MFH, iron oxide-based MNPs have been most extensively studied to date compared to other metal oxides with magnetic properties. The effectiveness of MFH relies on the composition, coating, size, physical and biocompatible properties of the MNPs. Pure iron oxide and doped iron oxide MNPs have been utilized to study their effects on cancer cell killing through MFH. This review evaluates the biocompatibility of pure and doped iron oxide MNPs and their subsequent hyperthermic effect for effectively killing cancer cells in vitro and in vivo.
期刊介绍:
Nanotoxicology invites contributions addressing research relating to the potential for human and environmental exposure, hazard and risk associated with the use and development of nano-structured materials. In this context, the term nano-structured materials has a broad definition, including ‘materials with at least one dimension in the nanometer size range’. These nanomaterials range from nanoparticles and nanomedicines, to nano-surfaces of larger materials and composite materials. The range of nanomaterials in use and under development is extremely diverse, so this journal includes a range of materials generated for purposeful delivery into the body (food, medicines, diagnostics and prosthetics), to consumer products (e.g. paints, cosmetics, electronics and clothing), and particles designed for environmental applications (e.g. remediation). It is the nano-size range if these materials which unifies them and defines the scope of Nanotoxicology .
While the term ‘toxicology’ indicates risk, the journal Nanotoxicology also aims to encompass studies that enhance safety during the production, use and disposal of nanomaterials. Well-controlled studies demonstrating a lack of exposure, hazard or risk associated with nanomaterials, or studies aiming to improve biocompatibility are welcomed and encouraged, as such studies will lead to an advancement of nanotechnology. Furthermore, many nanoparticles are developed with the intention to improve human health (e.g. antimicrobial agents), and again, such articles are encouraged. In order to promote quality, Nanotoxicology will prioritise publications that have demonstrated characterisation of the nanomaterials investigated.