Multimodal optical imaging of the oculofacial region using a solid tissue-simulating facial phantom.

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Lilangi S Ediriwickrema, Shijun Sung, Kaylyn C Mattick, Miranda B An, Claire Malley, Stephanie D Kirk, Divya Devineni, Jaylen M Lee, Gordon T Kennedy, Bernard Choi, Anthony J Durkin
{"title":"Multimodal optical imaging of the oculofacial region using a solid tissue-simulating facial phantom.","authors":"Lilangi S Ediriwickrema, Shijun Sung, Kaylyn C Mattick, Miranda B An, Claire Malley, Stephanie D Kirk, Divya Devineni, Jaylen M Lee, Gordon T Kennedy, Bernard Choi, Anthony J Durkin","doi":"10.1117/1.JBO.29.8.086002","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Spatial frequency domain imaging (SFDI) applies patterned near-infrared illumination to quantify the optical properties of subsurface tissue. The periocular region is unique due to its complex ocular adnexal anatomy. Although SFDI has been successfully applied to relatively flat <i>in vivo</i> tissues, regions that have significant height variations and curvature may result in optical property inaccuracies.</p><p><strong>Aim: </strong>We characterize the geometric impact of the periocular region on SFDI imaging reliability.</p><p><strong>Approach: </strong>SFDI was employed to measure the reduced scattering coefficient ( <math> <mrow> <msup> <mrow> <msub><mrow><mi>μ</mi></mrow> <mrow><mi>s</mi></mrow> </msub> </mrow> <mrow><mo>'</mo></mrow> </msup> </mrow> </math> ) and absorption coefficient ( <math> <mrow><msub><mi>μ</mi> <mi>a</mi></msub> </mrow> </math> ) of the periocular region in a cast facial tissue-simulating phantom by capturing images along regions of interest (ROIs): inferior temporal quadrant (ITQ), inferior nasal quadrant (INQ), superior temporal quadrant (STQ), central eyelid margin (CEM), rostral lateral nasal bridge (RLNB), and forehead (FH). The phantom was placed on a chin rest and imaged nine times from an \"en face\" or \"side profile\" position, and the flat back of the phantom was measured 15 times.</p><p><strong>Results: </strong>The measured <math> <mrow><msub><mi>μ</mi> <mi>a</mi></msub> </mrow> </math> and <math> <mrow> <msup> <mrow> <msub><mrow><mi>μ</mi></mrow> <mrow><mi>s</mi></mrow> </msub> </mrow> <mrow><mo>'</mo></mrow> </msup> </mrow> </math> of a cast facial phantom are accurate when comparing the ITQ, INQ, STQ, and FH to its flat posterior surface. Paired <math><mrow><mi>t</mi></mrow> </math> tests of ITQ, INQ, STQ, and FH <math> <mrow><msub><mi>μ</mi> <mi>a</mi></msub> </mrow> </math> and <math> <mrow> <msup> <mrow> <msub><mrow><mi>μ</mi></mrow> <mrow><mi>s</mi></mrow> </msub> </mrow> <mrow><mo>'</mo></mrow> </msup> </mrow> </math> concluded that there is not enough evidence to suggest that imaging orientation impacted the measurement accuracy. Regions of extreme topographical variation, i.e., CEM and RLNB, did exhibit differences in measured optical properties.</p><p><strong>Conclusions: </strong>We are the first to evaluate the geometric implications of wide-field imaging along the periocular region using a solid tissue-simulating facial phantom. Results suggest that the ITQ, INQ, STQ, and FH of a generalized face have minimal impact on the SFDI measurement accuracy. Areas with heightened topographic variation exhibit measurement variability. Device and facial positioning do not appear to bias measurements. These findings confirm the need to carefully select ROIs when measuring optical properties along the periocular region.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 8","pages":"086002"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293559/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.29.8.086002","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: Spatial frequency domain imaging (SFDI) applies patterned near-infrared illumination to quantify the optical properties of subsurface tissue. The periocular region is unique due to its complex ocular adnexal anatomy. Although SFDI has been successfully applied to relatively flat in vivo tissues, regions that have significant height variations and curvature may result in optical property inaccuracies.

Aim: We characterize the geometric impact of the periocular region on SFDI imaging reliability.

Approach: SFDI was employed to measure the reduced scattering coefficient ( μ s ' ) and absorption coefficient ( μ a ) of the periocular region in a cast facial tissue-simulating phantom by capturing images along regions of interest (ROIs): inferior temporal quadrant (ITQ), inferior nasal quadrant (INQ), superior temporal quadrant (STQ), central eyelid margin (CEM), rostral lateral nasal bridge (RLNB), and forehead (FH). The phantom was placed on a chin rest and imaged nine times from an "en face" or "side profile" position, and the flat back of the phantom was measured 15 times.

Results: The measured μ a and μ s ' of a cast facial phantom are accurate when comparing the ITQ, INQ, STQ, and FH to its flat posterior surface. Paired t tests of ITQ, INQ, STQ, and FH μ a and μ s ' concluded that there is not enough evidence to suggest that imaging orientation impacted the measurement accuracy. Regions of extreme topographical variation, i.e., CEM and RLNB, did exhibit differences in measured optical properties.

Conclusions: We are the first to evaluate the geometric implications of wide-field imaging along the periocular region using a solid tissue-simulating facial phantom. Results suggest that the ITQ, INQ, STQ, and FH of a generalized face have minimal impact on the SFDI measurement accuracy. Areas with heightened topographic variation exhibit measurement variability. Device and facial positioning do not appear to bias measurements. These findings confirm the need to carefully select ROIs when measuring optical properties along the periocular region.

使用固体组织模拟面部模型对眼脸区域进行多模态光学成像。
意义重大:空间频率域成像(SFDI)应用图案化的近红外照明来量化表层下组织的光学特性。眼周区域因其复杂的眼部附件解剖结构而独具特色。尽管 SFDI 已成功应用于相对平坦的活体组织,但高度变化和曲率较大的区域可能会导致光学特性不准确。Aim: We characterize the geometric impact of the periocular region on SFDI imaging reliability.Approach.我们描述了眼周区域对 SFDI 成像可靠性的几何影响:采用 SFDI 测量铸造面部组织模拟模型中眼周区域的降低散射系数(μ s ' )和吸收系数(μ a ),方法是沿感兴趣区域(ROI)捕获图像:颞下象限(ITQ)、鼻下象限(INQ)、颞上象限(STQ)、眼睑中央边缘(CEM)、喙侧鼻梁(RLNB)和前额(FH)。将人体模型放在颏托上,从 "正面 "或 "侧面 "位置进行 9 次成像,并对人体模型的背部平面进行 15 次测量:结果:在比较 ITQ、INQ、STQ 和 FH 与其平坦后表面时,测量到的铸造面部模型的 μ a 和 μ s ' 是准确的。对 ITQ、INQ、STQ 和 FH μ a 和 μ s' 进行配对 t 检验后得出结论,没有足够证据表明成像方向会影响测量的准确性。地形变化极大的区域,即 CEM 和 RLNB,在测量的光学特性方面确实存在差异:我们首次使用固体组织模拟面部模型对眼周区域宽视场成像的几何影响进行了评估。结果表明,广义面部的 ITQ、INQ、STQ 和 FH 对 SFDI 测量精度的影响微乎其微。地形变化较大的区域会出现测量差异。设备和面部定位似乎不会对测量产生偏差。这些发现证实,在测量眼周区域的光学特性时,需要仔细选择 ROI。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信