{"title":"Genome-Scale Analyses Reveal Roadblocks to Monkey Cloning.","authors":"Marcelo Tigre Moura","doi":"10.1089/cell.2024.0048","DOIUrl":null,"url":null,"abstract":"<p><p>Cloning by somatic cell nuclear transfer (SCNT) remained challenging for Rhesus monkeys, mostly due to its low efficiency and neonatal death. Genome-scale analyses revealed that monkey SCNT embryos displayed widespread DNA methylation and transcriptional alterations, thus including loss of genomic imprinting that correlated with placental dysfunction. The transfer of inner cell masses (ICM) from cloned blastocysts into ICM-depleted fertilized embryos rescued placental insufficiency and gave rise to a cloned Rhesus monkey that reached adulthood without noticeable abnormalities.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular reprogramming","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cell.2024.0048","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cloning by somatic cell nuclear transfer (SCNT) remained challenging for Rhesus monkeys, mostly due to its low efficiency and neonatal death. Genome-scale analyses revealed that monkey SCNT embryos displayed widespread DNA methylation and transcriptional alterations, thus including loss of genomic imprinting that correlated with placental dysfunction. The transfer of inner cell masses (ICM) from cloned blastocysts into ICM-depleted fertilized embryos rescued placental insufficiency and gave rise to a cloned Rhesus monkey that reached adulthood without noticeable abnormalities.
期刊介绍:
Cellular Reprogramming is the premier journal dedicated to providing new insights on the etiology, development, and potential treatment of various diseases through reprogramming cellular mechanisms. The Journal delivers information on cutting-edge techniques and the latest high-quality research and discoveries that are transforming biomedical research.
Cellular Reprogramming coverage includes:
Somatic cell nuclear transfer and reprogramming in early embryos
Embryonic stem cells
Nuclear transfer stem cells (stem cells derived from nuclear transfer embryos)
Generation of induced pluripotent stem (iPS) cells and/or potential for cell-based therapies
Epigenetics
Adult stem cells and pluripotency.