{"title":"Differential methylation patterns in paternally imprinted gene promoter regions in sperm from hepatitis B virus infected individuals.","authors":"Baoyan Wu, Yuying Sheng, Wenwei Yu, Lewen Ruan, Hao Geng, Chuan Xu, Chao Wang, Dongdong Tang, Mingrong Lv, Rong Hua, Kuokuo Li","doi":"10.1186/s12860-024-00515-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hepatitis B virus (HBV) infection poses a substantial threat to human health, impacting not only infected individuals but also potentially exerting adverse effects on the health of their offspring. The underlying mechanisms driving this phenomenon remain elusive. This study aims to shed light on this issue by examining alterations in paternally imprinted genes within sperm.</p><p><strong>Methods: </strong>A cohort of 35 individuals with normal semen analysis, comprising 17 hepatitis B surface antigen (HBsAg)-positive and 18 negative individuals, was recruited. Based on the previous research and the Online Mendelian Inheritance in Man database (OMIM, https://www.omim.org/ ), targeted promoter methylation sequencing was employed to investigate 28 paternally imprinted genes associated with various diseases.</p><p><strong>Results: </strong>Bioinformatic analyses revealed 42 differentially methylated sites across 29 CpG islands within 19 genes and four differentially methylated CpG islands within four genes. At the gene level, an increase in methylation of DNMT1 and a decrease in methylation of CUL7, PRKAG2, and TP53 were observed. DNA methylation haplotype analysis identified 51 differentially methylated haplotypes within 36 CpG islands across 22 genes.</p><p><strong>Conclusions: </strong>This is the first study to explore the effects of HBV infection on sperm DNA methylation and the potential underlying mechanisms of intergenerational influence of paternal HBV infection.</p>","PeriodicalId":9099,"journal":{"name":"BMC Molecular and Cell Biology","volume":"25 1","pages":"19"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295637/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Molecular and Cell Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12860-024-00515-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Hepatitis B virus (HBV) infection poses a substantial threat to human health, impacting not only infected individuals but also potentially exerting adverse effects on the health of their offspring. The underlying mechanisms driving this phenomenon remain elusive. This study aims to shed light on this issue by examining alterations in paternally imprinted genes within sperm.
Methods: A cohort of 35 individuals with normal semen analysis, comprising 17 hepatitis B surface antigen (HBsAg)-positive and 18 negative individuals, was recruited. Based on the previous research and the Online Mendelian Inheritance in Man database (OMIM, https://www.omim.org/ ), targeted promoter methylation sequencing was employed to investigate 28 paternally imprinted genes associated with various diseases.
Results: Bioinformatic analyses revealed 42 differentially methylated sites across 29 CpG islands within 19 genes and four differentially methylated CpG islands within four genes. At the gene level, an increase in methylation of DNMT1 and a decrease in methylation of CUL7, PRKAG2, and TP53 were observed. DNA methylation haplotype analysis identified 51 differentially methylated haplotypes within 36 CpG islands across 22 genes.
Conclusions: This is the first study to explore the effects of HBV infection on sperm DNA methylation and the potential underlying mechanisms of intergenerational influence of paternal HBV infection.