Henry S Kavazoi, Celina M Miyazaki, Carlos J L Constantino, Cibely S Martin, Priscila Alessio
{"title":"Selective Detection of Paraquat in Adulterated and Complex Environmental Samples Using Raman Spectroelectrochemistry.","authors":"Henry S Kavazoi, Celina M Miyazaki, Carlos J L Constantino, Cibely S Martin, Priscila Alessio","doi":"10.1177/00037028241267920","DOIUrl":null,"url":null,"abstract":"<p><p>Growing demand for pesticides has created an environment prone to deceptive activities, where counterfeit or adulterated pesticide products infiltrate the market, often escaping rapid detection. This situation presents a significant challenge for sensor technology, crucial in identifying authentic pesticides and ensuring agricultural safety practices. Raman spectroscopy emerges as a powerful technique for detecting adulterants. Coupling the electrochemical techniques allows a more specific and selective detection and compound identification. In this study, we evaluate the efficacy of spectroelectrochemical measurements by coupling a potentiostat and Raman spectrograph to identify paraquat, a nonselective herbicide banned in several countries. Our findings demonstrate that applying -0.70 V during measurements yields highly selective Raman spectra, highlighting the primary vibrational bands of paraquat. Moreover, the selective Raman signal of paraquat was discernible in complex samples, including tap water, apple, and green cabbage, even in the presence of other pesticides such as diquat, acephate, and glyphosate. These results underscore the potential of this technique for reliable pesticide detection in diverse and complex matrices.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"912-921"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028241267920","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Growing demand for pesticides has created an environment prone to deceptive activities, where counterfeit or adulterated pesticide products infiltrate the market, often escaping rapid detection. This situation presents a significant challenge for sensor technology, crucial in identifying authentic pesticides and ensuring agricultural safety practices. Raman spectroscopy emerges as a powerful technique for detecting adulterants. Coupling the electrochemical techniques allows a more specific and selective detection and compound identification. In this study, we evaluate the efficacy of spectroelectrochemical measurements by coupling a potentiostat and Raman spectrograph to identify paraquat, a nonselective herbicide banned in several countries. Our findings demonstrate that applying -0.70 V during measurements yields highly selective Raman spectra, highlighting the primary vibrational bands of paraquat. Moreover, the selective Raman signal of paraquat was discernible in complex samples, including tap water, apple, and green cabbage, even in the presence of other pesticides such as diquat, acephate, and glyphosate. These results underscore the potential of this technique for reliable pesticide detection in diverse and complex matrices.
期刊介绍:
Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”