Sharaf J. Malebary , Nashwan Alromema , Muhammad Taseer Suleman , Maham Saleem
{"title":"m5c-iDeep: 5-Methylcytosine sites identification through deep learning","authors":"Sharaf J. Malebary , Nashwan Alromema , Muhammad Taseer Suleman , Maham Saleem","doi":"10.1016/j.ymeth.2024.07.008","DOIUrl":null,"url":null,"abstract":"<div><p>5-Methylcytosine (m5c) is a modified cytosine base which is formed as the result of addition of methyl group added at position 5 of carbon. This modification is one of the most common PTM that used to occur in almost all types of RNA. The conventional laboratory methods do not provide quick reliable identification of m5c sites. However, the sequence data readiness has made it feasible to develop computationally intelligent models that optimize the identification process for accuracy and robustness. The present research focused on the development of in-silico methods built using deep learning models. The encoded data was then fed into deep learning models, which included gated recurrent unit (GRU), long short-term memory (LSTM), and bi-directional LSTM (Bi-LSTM). After that, the models were subjected to a rigorous evaluation process that included both independent set testing and 10-fold cross validation. The results revealed that LSTM-based model, m5c-iDeep, outperformed revealing 99.9 % accuracy while comparing with existing m5c predictors. In order to facilitate researchers, m5c-iDeep was also deployed on a web-based server which is accessible at <span><span>https://taseersuleman-m5c-ideep-m5c-ideep.streamlit.app/</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"230 ","pages":"Pages 80-90"},"PeriodicalIF":4.2000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202324001701","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
5-Methylcytosine (m5c) is a modified cytosine base which is formed as the result of addition of methyl group added at position 5 of carbon. This modification is one of the most common PTM that used to occur in almost all types of RNA. The conventional laboratory methods do not provide quick reliable identification of m5c sites. However, the sequence data readiness has made it feasible to develop computationally intelligent models that optimize the identification process for accuracy and robustness. The present research focused on the development of in-silico methods built using deep learning models. The encoded data was then fed into deep learning models, which included gated recurrent unit (GRU), long short-term memory (LSTM), and bi-directional LSTM (Bi-LSTM). After that, the models were subjected to a rigorous evaluation process that included both independent set testing and 10-fold cross validation. The results revealed that LSTM-based model, m5c-iDeep, outperformed revealing 99.9 % accuracy while comparing with existing m5c predictors. In order to facilitate researchers, m5c-iDeep was also deployed on a web-based server which is accessible at https://taseersuleman-m5c-ideep-m5c-ideep.streamlit.app/.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.