Categorical Idempotents Via Shifted 0-Affine Algebras

IF 0.5 4区 数学 Q3 MATHEMATICS
You-Hung Hsu
{"title":"Categorical Idempotents Via Shifted 0-Affine Algebras","authors":"You-Hung Hsu","doi":"10.1007/s10468-024-10279-5","DOIUrl":null,"url":null,"abstract":"<div><p>We show that a categorical action of shifted 0-affine algebra naturally gives two families of pairs of complementary idempotents in the triangulated monoidal category of triangulated endofunctors for each weight category. Consequently, we obtain two families of pairs of complementary idempotents in the triangulated monoidal category <span>\\({\\textrm{D}}^b\\textrm{Coh}(G/P \\times G/P)\\)</span>. As an application, this provides examples where the projection functors of a semiorthogonal decomposition are kernel functors, and we determine the generators of the component categories in the Grassmannians case.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 4","pages":"1735 - 1772"},"PeriodicalIF":0.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10279-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that a categorical action of shifted 0-affine algebra naturally gives two families of pairs of complementary idempotents in the triangulated monoidal category of triangulated endofunctors for each weight category. Consequently, we obtain two families of pairs of complementary idempotents in the triangulated monoidal category \({\textrm{D}}^b\textrm{Coh}(G/P \times G/P)\). As an application, this provides examples where the projection functors of a semiorthogonal decomposition are kernel functors, and we determine the generators of the component categories in the Grassmannians case.

通过移位 0 阿芬代数的类等价物
我们证明,移位 0-affine 代数的分类作用会自然地给出每个权重类别的三角单义类别中的两对互补幂函数族。因此,我们得到了三角单义范畴 \({\textrm{D}}^b\textrm{Coh}(G/P\times G/P)\)中的两对互补幂函数族。作为应用,这提供了半互交分解的投影函子是核函子的例子,并且我们确定了格拉斯曼情况下的成分范畴的生成器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups. The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信