Stochastic differential equation for a system coupled to a thermostatic bath via an arbitrary interaction Hamiltonian

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Jong-Min Park, Hyunggyu Park, Jae Sung Lee
{"title":"Stochastic differential equation for a system coupled to a thermostatic bath via an arbitrary interaction Hamiltonian","authors":"Jong-Min Park, Hyunggyu Park, Jae Sung Lee","doi":"10.1103/physreve.110.014143","DOIUrl":null,"url":null,"abstract":"The conventional Langevin equation offers a mathematically convenient framework for investigating open stochastic systems interacting with their environment or a bath. However, it is not suitable for a wide variety of systems whose dynamics rely on the nature of the environmental interaction, as the equation does not incorporate any specific information regarding that interaction. Here, we present a stochastic differential equation (SDE) for an open system coupled to a thermostatic bath via an arbitrary interaction Hamiltonian. This SDE encodes the interaction information to a fictitious potential (mean force) and a position-dependent damping coefficient. Surprisingly, we find that the conventional Langevin equation can be recovered in the presence of arbitrary strong interactions given two conditions: translational invariance of the potential and mutual independence of baths. Our results provide a comprehensive framework for studying open stochastic systems with an arbitrary interaction Hamiltonian and yield deeper insight into why various experiments fit the conventional Langevin description regardless of the strength or type of interaction.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.014143","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The conventional Langevin equation offers a mathematically convenient framework for investigating open stochastic systems interacting with their environment or a bath. However, it is not suitable for a wide variety of systems whose dynamics rely on the nature of the environmental interaction, as the equation does not incorporate any specific information regarding that interaction. Here, we present a stochastic differential equation (SDE) for an open system coupled to a thermostatic bath via an arbitrary interaction Hamiltonian. This SDE encodes the interaction information to a fictitious potential (mean force) and a position-dependent damping coefficient. Surprisingly, we find that the conventional Langevin equation can be recovered in the presence of arbitrary strong interactions given two conditions: translational invariance of the potential and mutual independence of baths. Our results provide a comprehensive framework for studying open stochastic systems with an arbitrary interaction Hamiltonian and yield deeper insight into why various experiments fit the conventional Langevin description regardless of the strength or type of interaction.

Abstract Image

通过任意相互作用哈密尔顿与恒温槽耦合的系统的随机微分方程
传统的朗格文方程为研究与环境或水浴相互作用的开放式随机系统提供了一个数学上方便的框架。然而,它并不适用于动态依赖于环境相互作用性质的各种系统,因为该方程并不包含有关这种相互作用的任何特定信息。在这里,我们提出了一种随机微分方程(SDE),用于通过任意相互作用哈密顿与恒温水浴耦合的开放系统。这个 SDE 将相互作用信息编码为一个虚构的势能(平均力)和一个与位置相关的阻尼系数。令人惊讶的是,我们发现在存在任意强相互作用的情况下,传统的朗格文方程可以在两个条件下恢复:势的平移不变性和浴的相互独立性。我们的研究结果为研究具有任意相互作用哈密顿的开放随机系统提供了一个全面的框架,并使我们更深入地了解了为什么各种实验都符合传统的朗格文描述,而与相互作用的强度或类型无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信