Reflexive homology and involutive Hochschild homology as equivariant Loday constructions

Ayelet Lindenstrauss, Birgit Richter
{"title":"Reflexive homology and involutive Hochschild homology as equivariant Loday constructions","authors":"Ayelet Lindenstrauss, Birgit Richter","doi":"arxiv-2407.20082","DOIUrl":null,"url":null,"abstract":"We prove that for commutative rings whose underlying abelian group is flat\nand in which $2$ is invertible, the homotopy groups at the trivial orbit of the\nequivariant Loday construction of the one-point compactification of the\nsign-representation are isomorphic to reflexive homology as studied by Graves\nand to involutive Hochschild homology defined by Fern\\`andez-al\\`encia and\nGiansiracusa. We also show a relative version of these results for commutative\n$k$-algebras $R$ with involution, whenever $2$ is invertible in $R$ and $R$ is\nflat as a $k$-module.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that for commutative rings whose underlying abelian group is flat and in which $2$ is invertible, the homotopy groups at the trivial orbit of the equivariant Loday construction of the one-point compactification of the sign-representation are isomorphic to reflexive homology as studied by Graves and to involutive Hochschild homology defined by Fern\`andez-al\`encia and Giansiracusa. We also show a relative version of these results for commutative $k$-algebras $R$ with involution, whenever $2$ is invertible in $R$ and $R$ is flat as a $k$-module.
作为等变洛代构造的反身同构和渐开霍赫希尔德同构
我们证明,对于底层无性群是平坦的且其中$2$是可逆的交换环,符号表示的一点紧凑化的后变洛代构造的微分轨道上的同调群与格雷夫斯研究的反折同调以及费尔南德斯和吉安西拉库萨定义的内卷霍赫希尔德同调是同构的。我们还展示了这些结果的相对版本,即当$2$在$R$中是可逆的,且$R$作为$k$模块是平的时,这些结果适用于具有内卷性的交换$k$代数$R$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信