Risk management in multi-objective portfolio optimization under uncertainty

Yannick Becker, Pascal Halffmann, Anita Schöbel
{"title":"Risk management in multi-objective portfolio optimization under uncertainty","authors":"Yannick Becker, Pascal Halffmann, Anita Schöbel","doi":"arxiv-2407.19936","DOIUrl":null,"url":null,"abstract":"In portfolio optimization, decision makers face difficulties from\nuncertainties inherent in real-world scenarios. These uncertainties\nsignificantly influence portfolio outcomes in both classical and\nmulti-objective Markowitz models. To address these challenges, our research\nexplores the power of robust multi-objective optimization. Since portfolio\nmanagers frequently measure their solutions against benchmarks, we enhance the\nmulti-objective min-regret robustness concept by incorporating these benchmark\ncomparisons. This approach bridges the gap between theoretical models and real-world\ninvestment scenarios, offering portfolio managers more reliable and adaptable\nstrategies for navigating market uncertainties. Our framework provides a more\nnuanced and practical approach to portfolio optimization under real-world\nconditions.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.19936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In portfolio optimization, decision makers face difficulties from uncertainties inherent in real-world scenarios. These uncertainties significantly influence portfolio outcomes in both classical and multi-objective Markowitz models. To address these challenges, our research explores the power of robust multi-objective optimization. Since portfolio managers frequently measure their solutions against benchmarks, we enhance the multi-objective min-regret robustness concept by incorporating these benchmark comparisons. This approach bridges the gap between theoretical models and real-world investment scenarios, offering portfolio managers more reliable and adaptable strategies for navigating market uncertainties. Our framework provides a more nuanced and practical approach to portfolio optimization under real-world conditions.
不确定情况下多目标组合优化的风险管理
在投资组合优化中,决策者面临着现实世界中固有的不确定性带来的困难。这些不确定性严重影响了经典模型和多目标马科维茨模型中的投资组合结果。为了应对这些挑战,我们的研究探索了稳健多目标优化的力量。由于投资组合经理经常根据基准来衡量他们的解决方案,我们通过纳入这些基准比较来增强多目标最小遗憾稳健性概念。这种方法弥补了理论模型与现实世界投资场景之间的差距,为投资组合经理提供了更可靠、更适应市场不确定性的策略。我们的框架为现实世界条件下的投资组合优化提供了一种更均衡、更实用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信