{"title":"Effect of thinning intensity on the carbon sequestration of natural mixed coniferous and broadleaf forests in Xiaoxing’an Mountains, China","authors":"Hangfeng Qu, Xibin Dong, Hui Liu, Baoshan Zhang, Tong Gao, Yuan Meng, Yunze Ren, Ying Zhang","doi":"10.1007/s11676-024-01761-3","DOIUrl":null,"url":null,"abstract":"<p>To study the effect of thinning intensity on the carbon sequestration by natural mixed coniferous and broadleaf forests in Xiaoxing’an Mountains, China, we established six 100 m × 100 m experimental plots in Dongfanghong Forest that varied in thinning intensity: plot A (10%), B (15%), C (20%), D (25%), E (30%), F (35%), and the control sample area (0%). A principal component analysis was performed using 50 different variables, including species diversity, soil fertility, litter characteristics, canopy structure parameters, and seedling regeneration parameters. The effects of thinning intensity on carbon sequestration were strongest in plot E (0.75), followed by D (0.63), F (0.50), C (0.48), B (0.22), A (0.11), and the control (0.06). The composite score of plot E was the highest, indicating that the carbon sequestration effect was strongest at a thinning intensity of 30%. These findings provide useful insights that could aid the management of natural mixed coniferous and broadleaf forests in Xiaoxing’an Mountains, China. This information has implications for future studies of these forests, and the methods used could aid future ecological assessments of the natural forests in Xiaoxing’an Mountains, China.</p>","PeriodicalId":15830,"journal":{"name":"Journal of Forestry Research","volume":"55 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forestry Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11676-024-01761-3","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
To study the effect of thinning intensity on the carbon sequestration by natural mixed coniferous and broadleaf forests in Xiaoxing’an Mountains, China, we established six 100 m × 100 m experimental plots in Dongfanghong Forest that varied in thinning intensity: plot A (10%), B (15%), C (20%), D (25%), E (30%), F (35%), and the control sample area (0%). A principal component analysis was performed using 50 different variables, including species diversity, soil fertility, litter characteristics, canopy structure parameters, and seedling regeneration parameters. The effects of thinning intensity on carbon sequestration were strongest in plot E (0.75), followed by D (0.63), F (0.50), C (0.48), B (0.22), A (0.11), and the control (0.06). The composite score of plot E was the highest, indicating that the carbon sequestration effect was strongest at a thinning intensity of 30%. These findings provide useful insights that could aid the management of natural mixed coniferous and broadleaf forests in Xiaoxing’an Mountains, China. This information has implications for future studies of these forests, and the methods used could aid future ecological assessments of the natural forests in Xiaoxing’an Mountains, China.
期刊介绍:
The Journal of Forestry Research (JFR), founded in 1990, is a peer-reviewed quarterly journal in English. JFR has rapidly emerged as an international journal published by Northeast Forestry University and Ecological Society of China in collaboration with Springer Verlag. The journal publishes scientific articles related to forestry for a broad range of international scientists, forest managers and practitioners.The scope of the journal covers the following five thematic categories and 20 subjects:
Basic Science of Forestry,
Forest biometrics,
Forest soils,
Forest hydrology,
Tree physiology,
Forest biomass, carbon, and bioenergy,
Forest biotechnology and molecular biology,
Forest Ecology,
Forest ecology,
Forest ecological services,
Restoration ecology,
Forest adaptation to climate change,
Wildlife ecology and management,
Silviculture and Forest Management,
Forest genetics and tree breeding,
Silviculture,
Forest RS, GIS, and modeling,
Forest management,
Forest Protection,
Forest entomology and pathology,
Forest fire,
Forest resources conservation,
Forest health monitoring and assessment,
Wood Science and Technology,
Wood Science and Technology.