{"title":"Electrochemical performance of SnO2 after blending with Cu","authors":"Naveen Chandra Joshi, Prateek Gururani, Niraj Kumar","doi":"10.1007/s11581-024-05742-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, SnO<sub>2</sub> nanoparticles (SnO<sub>2</sub> NPs) were synthesised using a leaf extract from <i>Shorea robusta</i>. The synthetic method was found to be reliable, cost-effective, and efficient. The synthesised SnO<sub>2</sub> NPs have been incorporated with copper (Cu) and used as an electrode material for supercapacitors (SCs). The potential of SnO<sub>2</sub> and its nanocomposite for SCs was investigated using various electrochemical parameters. At a current density of 2 A/g, the maximum specific capacitance of SnO<sub>2</sub>@Cu-A, SnO<sub>2</sub>@Cu-B, and SnO<sub>2</sub>@Cu-C was found to be 220, 226, and 300 F/g. The maximum energy density of 11.1 Wh/kg for SnO<sub>2</sub>@Cu-C has been evaluated at a power density of 1021.3 W/kg. After 5000 GCD cycles, a retention of 96.8% was found for SnO<sub>2</sub>@Cu-C. Under two electrode systems, a retention of 95.4% was found for SnO<sub>2</sub>@Cu-C.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-024-05742-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, SnO2 nanoparticles (SnO2 NPs) were synthesised using a leaf extract from Shorea robusta. The synthetic method was found to be reliable, cost-effective, and efficient. The synthesised SnO2 NPs have been incorporated with copper (Cu) and used as an electrode material for supercapacitors (SCs). The potential of SnO2 and its nanocomposite for SCs was investigated using various electrochemical parameters. At a current density of 2 A/g, the maximum specific capacitance of SnO2@Cu-A, SnO2@Cu-B, and SnO2@Cu-C was found to be 220, 226, and 300 F/g. The maximum energy density of 11.1 Wh/kg for SnO2@Cu-C has been evaluated at a power density of 1021.3 W/kg. After 5000 GCD cycles, a retention of 96.8% was found for SnO2@Cu-C. Under two electrode systems, a retention of 95.4% was found for SnO2@Cu-C.
期刊介绍:
Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.