Data-driven physics-based modeling of pedestrian dynamics

Caspar A. S. Pouw, Geert G. M. van der Vleuten, Alessandro Corbetta, Federico Toschi
{"title":"Data-driven physics-based modeling of pedestrian dynamics","authors":"Caspar A. S. Pouw, Geert G. M. van der Vleuten, Alessandro Corbetta, Federico Toschi","doi":"arxiv-2407.20794","DOIUrl":null,"url":null,"abstract":"Pedestrian crowds encompass a complex interplay of intentional movements\naimed at reaching specific destinations, fluctuations due to personal and\ninterpersonal variability, and interactions with each other and the\nenvironment. Previous work showed the effectiveness of Langevin-like equations\nin capturing the statistical properties of pedestrian dynamics in simple\nsettings, such as almost straight trajectories. However, modeling more complex\ndynamics, e.g. when multiple routes and origin-destinations are involved,\nremains a significant challenge. In this work, we introduce a novel and generic\nframework to describe the dynamics of pedestrians in any geometric setting,\nsignificantly extending previous works. Our model is based on Langevin dynamics\nwith two timescales. The fast timescale corresponds to the stochastic\nfluctuations present when a pedestrian is walking. The slow timescale is\nassociated with the dynamics that a pedestrian plans to follow, thus a smoother\npath. Employing a data-driven approach inspired by statistical field theories,\nwe learn the complex potentials directly from the data, namely a\nhigh-statistics database of real-life pedestrian trajectories. This approach\nmakes the model generic as the potentials can be read from any trajectory data\nset and the underlying Langevin structure enables physics-based insights. We\nvalidate our model through a comprehensive statistical analysis, comparing\nsimulated trajectories with actual pedestrian measurements across five\ncomplementary settings, including a real-life train platform scenario,\nunderscoring its practical societal relevance. We show that our model\neffectively captures fluctuation statistics in pedestrian motion. Beyond\nproviding fundamental insights and predictive capabilities in pedestrian\ndynamics, our model could be used to investigate generic active dynamics such\nas vehicular traffic and collective animal behavior.","PeriodicalId":501043,"journal":{"name":"arXiv - PHYS - Physics and Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Physics and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pedestrian crowds encompass a complex interplay of intentional movements aimed at reaching specific destinations, fluctuations due to personal and interpersonal variability, and interactions with each other and the environment. Previous work showed the effectiveness of Langevin-like equations in capturing the statistical properties of pedestrian dynamics in simple settings, such as almost straight trajectories. However, modeling more complex dynamics, e.g. when multiple routes and origin-destinations are involved, remains a significant challenge. In this work, we introduce a novel and generic framework to describe the dynamics of pedestrians in any geometric setting, significantly extending previous works. Our model is based on Langevin dynamics with two timescales. The fast timescale corresponds to the stochastic fluctuations present when a pedestrian is walking. The slow timescale is associated with the dynamics that a pedestrian plans to follow, thus a smoother path. Employing a data-driven approach inspired by statistical field theories, we learn the complex potentials directly from the data, namely a high-statistics database of real-life pedestrian trajectories. This approach makes the model generic as the potentials can be read from any trajectory data set and the underlying Langevin structure enables physics-based insights. We validate our model through a comprehensive statistical analysis, comparing simulated trajectories with actual pedestrian measurements across five complementary settings, including a real-life train platform scenario, underscoring its practical societal relevance. We show that our model effectively captures fluctuation statistics in pedestrian motion. Beyond providing fundamental insights and predictive capabilities in pedestrian dynamics, our model could be used to investigate generic active dynamics such as vehicular traffic and collective animal behavior.
基于数据的行人动力学物理建模
行人群包括旨在到达特定目的地的有意运动、个人和人际变异引起的波动以及相互之间和与环境之间的相互作用等复杂的相互作用。以往的研究表明,类似朗之万方程能有效捕捉行人在简单情况下的动态统计特性,如几乎笔直的轨迹。然而,要模拟更复杂的动态,例如涉及多条路线和出发地-目的地时的动态,仍然是一项重大挑战。在这项工作中,我们引入了一个新颖的通用框架来描述任何几何环境中的行人动力学,大大扩展了之前的工作。我们的模型基于具有两个时间尺度的朗格文动力学。快时间尺度对应于行人行走时的随机波动。慢时间尺度与行人计划遵循的动态相关,因此是一条更平滑的路径。受统计场理论启发,我们采用了一种数据驱动的方法,直接从数据(即现实生活中行人轨迹的高统计数据库)中学习复势。这种方法使模型具有通用性,因为电势可以从任何轨迹数据集中读取,而底层的朗格文结构又能使我们获得基于物理学的见解。我们通过全面的统计分析验证了我们的模型,将模拟轨迹与五个互补环境中的实际行人测量结果进行了比较,其中包括现实生活中的火车站台场景,强调了模型的实际社会意义。我们的研究表明,我们的模式能有效捕捉行人运动的波动统计数据。除了为行人动力学提供基本见解和预测能力外,我们的模型还可用于研究车辆交通和动物集体行为等一般主动动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信