Irene Martín-Brull, Carlos Cantero-Martínez, Samuel Franco-Luesma, Victoria Lafuente, Jorge Álvaro-Fuentes
{"title":"Shoot and Root Decomposition from Different Cropping Systems Under Semiarid Mediterranean Conditions","authors":"Irene Martín-Brull, Carlos Cantero-Martínez, Samuel Franco-Luesma, Victoria Lafuente, Jorge Álvaro-Fuentes","doi":"10.1007/s42729-024-01646-8","DOIUrl":null,"url":null,"abstract":"<p>Improving the management of crop residues is essential for water and soil conservation and for increasing soil carbon (C) and nitrogen (N) levels in dryland agroecosystems. The main objective of the study was to evaluate the decomposition dynamics and C and N released from crop residues from different cropping systems under semiarid Mediterranean conditions. A litterbag experiment was conducted from July of 2020 to June of 2021 to examine the shoot and root decomposition dynamics of different cropping systems; the following systems were selected: V(B), vetch (<i>Vicia sativa</i>) residue decomposition in a barley crop; B(V), barley (<i>Hordeum vulgare L</i>.) residue decomposition in a vetch crop; P(B), pea (<i>Pisum sativum</i>) residue decomposition in a barley crop; B(P), barley residue decomposition in a pea crop; and B(B), barley residue decomposition in a barley crop. After 48 weeks of decomposition, a 45% and 60% of residues mass remaining (MR) was found corresponding to vetch and pea shoot residues respectively, whilst barley MR ranged 77–87% depending on the cropping system. In root residues, the mass decay from legume residues (40–45%) was higher compared to barley residues (17–29%). Exponential decay and linear models explained the residue decomposition observed in our study conditions. Residues C to N ratio and edaphoclimatic conditions played a major role controlling the decomposition. Residue decomposition and C and N release dynamics from different crop residues need to be considered for a transition to more sustainable agroecosystems under Mediterranean semiarid conditions.</p>","PeriodicalId":17042,"journal":{"name":"Journal of Soil Science and Plant Nutrition","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soil Science and Plant Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s42729-024-01646-8","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Improving the management of crop residues is essential for water and soil conservation and for increasing soil carbon (C) and nitrogen (N) levels in dryland agroecosystems. The main objective of the study was to evaluate the decomposition dynamics and C and N released from crop residues from different cropping systems under semiarid Mediterranean conditions. A litterbag experiment was conducted from July of 2020 to June of 2021 to examine the shoot and root decomposition dynamics of different cropping systems; the following systems were selected: V(B), vetch (Vicia sativa) residue decomposition in a barley crop; B(V), barley (Hordeum vulgare L.) residue decomposition in a vetch crop; P(B), pea (Pisum sativum) residue decomposition in a barley crop; B(P), barley residue decomposition in a pea crop; and B(B), barley residue decomposition in a barley crop. After 48 weeks of decomposition, a 45% and 60% of residues mass remaining (MR) was found corresponding to vetch and pea shoot residues respectively, whilst barley MR ranged 77–87% depending on the cropping system. In root residues, the mass decay from legume residues (40–45%) was higher compared to barley residues (17–29%). Exponential decay and linear models explained the residue decomposition observed in our study conditions. Residues C to N ratio and edaphoclimatic conditions played a major role controlling the decomposition. Residue decomposition and C and N release dynamics from different crop residues need to be considered for a transition to more sustainable agroecosystems under Mediterranean semiarid conditions.
期刊介绍:
The Journal of Soil Science and Plant Nutrition is an international, peer reviewed journal devoted to publishing original research findings in the areas of soil science, plant nutrition, agriculture and environmental science.
Soil sciences submissions may cover physics, chemistry, biology, microbiology, mineralogy, ecology, pedology, soil classification and amelioration.
Plant nutrition and agriculture submissions may include plant production, physiology and metabolism of plants, plant ecology, diversity and sustainability of agricultural systems, organic and inorganic fertilization in relation to their impact on yields, quality of plants and ecological systems, and agroecosystems studies.
Submissions covering soil degradation, environmental pollution, nature conservation, and environmental protection are also welcome.
The journal considers for publication original research articles, technical notes, short communication, and reviews (both voluntary and by invitation), and letters to the editor.