{"title":"Lie semisimple algebras of derivations and varieties of PI-algebras with almost polynomial growth","authors":"Sebastiano Argenti","doi":"10.1090/proc/16896","DOIUrl":null,"url":null,"abstract":"<p>We consider associative algebras with an action by derivations by some finite dimensional and semisimple Lie algebra. We prove that if a differential variety has almost polynomial growth, then it is generated by one of the algebras <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U upper T 2 left-parenthesis upper W Subscript lamda Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>U</mml:mi> <mml:msub> <mml:mi>T</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>λ</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">UT_2(W_\\lambda )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E n d left-parenthesis upper W Subscript mu Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>E</mml:mi> <mml:mi>n</mml:mi> <mml:mi>d</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">End(W_\\mu )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for some integral dominant weight <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda comma mu\"> <mml:semantics> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>,</mml:mo> <mml:mi>μ</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\lambda ,\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu not-equals 0\"> <mml:semantics> <mml:mrow> <mml:mi>μ</mml:mi> <mml:mo>≠</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mu \\neq 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In the special case <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L equals German s German l Subscript 2\"> <mml:semantics> <mml:mrow> <mml:mi>L</mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"fraktur\">s</mml:mi> <mml:mi mathvariant=\"fraktur\">l</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L=\\mathfrak {sl}_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we prove that this is a sufficient condition too.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We consider associative algebras with an action by derivations by some finite dimensional and semisimple Lie algebra. We prove that if a differential variety has almost polynomial growth, then it is generated by one of the algebras UT2(Wλ)UT_2(W_\lambda ) or End(Wμ)End(W_\mu ) for some integral dominant weight λ,μ\lambda ,\mu with μ≠0\mu \neq 0. In the special case L=sl2L=\mathfrak {sl}_2 we prove that this is a sufficient condition too.
我们考虑的是具有某种有限维半简单李代数派生作用的关联代数。我们证明,如果一个微分方程具有几乎多项式的增长,那么它是由 U T 2 ( W λ ) UT_2(W_\lambda)或 E n d ( W μ ) End(W_\mu ) 中的一个代数生成的,对于某个积分主重 λ , μ \lambda ,\mu μ ≠ 0 \mu \neq 0。在 L = s l 2 L=\mathfrak {sl}_2 的特殊情况下,我们证明这也是一个充分条件。