Hamdane Akbi, Souleymen Rafai, Ahmed Mekki, Slimane Bekhouche, Sabri Touidjine, Elamine Louafi, Ahmed Saim, Mohamed Abderrahim Hamouche
{"title":"Model-free kinetic analysis of multi-step thermal decomposition of ammonium perchlorate coated with reduced graphene oxide","authors":"Hamdane Akbi, Souleymen Rafai, Ahmed Mekki, Slimane Bekhouche, Sabri Touidjine, Elamine Louafi, Ahmed Saim, Mohamed Abderrahim Hamouche","doi":"10.1007/s11144-024-02683-1","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the effect of coating AP with RGO on its thermal decomposition kinetics and behavior. Differential scanning calorimetry (DSC) was performed for pure AP and AP@RGO at several heating rates. DSC curves of AP@RGO for various heating rates were split into individual reactions using a mathematical deconvolution approach. The assessment of kinetic triplets of various reactions was accomplished for both AP and AP@RGO using an effective model-free approach (MFA). Deconvolution of the DSC curve for AP@RGO reveals three distinct decomposition processes, compared to only two observed in pure AP. Notably, the low-temperature decomposition reaction appears to be catalyzed by RGO, leading to a dramatic decrease in activation energy from 164 to 116 kJ/g. Conversely, the high-temperature decomposition remains uncatalyzed, with a slight increase in activation energy from 177 to 188 kJ/g. The catalytic effectiveness of RGO in the thermal decomposition process of AP fluctuates due to structural transformations within RGO and its degradation in the presence of perchloric acid.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11144-024-02683-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the effect of coating AP with RGO on its thermal decomposition kinetics and behavior. Differential scanning calorimetry (DSC) was performed for pure AP and AP@RGO at several heating rates. DSC curves of AP@RGO for various heating rates were split into individual reactions using a mathematical deconvolution approach. The assessment of kinetic triplets of various reactions was accomplished for both AP and AP@RGO using an effective model-free approach (MFA). Deconvolution of the DSC curve for AP@RGO reveals three distinct decomposition processes, compared to only two observed in pure AP. Notably, the low-temperature decomposition reaction appears to be catalyzed by RGO, leading to a dramatic decrease in activation energy from 164 to 116 kJ/g. Conversely, the high-temperature decomposition remains uncatalyzed, with a slight increase in activation energy from 177 to 188 kJ/g. The catalytic effectiveness of RGO in the thermal decomposition process of AP fluctuates due to structural transformations within RGO and its degradation in the presence of perchloric acid.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.