Substituent Controlled Tunable Fluorescence from Green to Red and pH Stimuli‐Induced Reversible Fluorescence Switching in Triphenylamine–Quinoxaline Derivatives

IF 2.8 4区 化学 Q1 CHEMISTRY, ORGANIC
Jerome Issac , Sasikala Ravi , Subrmanian Karthikeyan , Govindasami Periyasami , Dohyun Moon , Savarimuthu Philip Anthony , Vedichi Madhu
{"title":"Substituent Controlled Tunable Fluorescence from Green to Red and pH Stimuli‐Induced Reversible Fluorescence Switching in Triphenylamine–Quinoxaline Derivatives","authors":"Jerome Issac ,&nbsp;Sasikala Ravi ,&nbsp;Subrmanian Karthikeyan ,&nbsp;Govindasami Periyasami ,&nbsp;Dohyun Moon ,&nbsp;Savarimuthu Philip Anthony ,&nbsp;Vedichi Madhu","doi":"10.1002/ajoc.202400282","DOIUrl":null,"url":null,"abstract":"<div><div>A series of triphenylamine‐quinoxaline donor‐acceptor (bipolar) compounds (<strong>TPA‐QH</strong>, <strong>TPA‐QMe</strong>, <strong>TPA‐QCOOH</strong> and <strong>TPA‐QNO<sub>2</sub></strong>) with different substituents were synthesized and investigated their fluorescence properties, including stimuli‐induced fluorescence responses in solution and the solid‐state. Single crystal structural analysis revealed non‐planar molecular conformation, substituent controlled intermolecular interactions and molecular packing in the crystal lattice. <strong>TPA‐QH</strong>, <strong>TPA‐QMe</strong>, <strong>TPA‐QCOOH</strong> and <strong>TPA‐QNO<sub>2</sub></strong> showed tunable solid‐state emission from green to red. <strong>TPA‐QH</strong> showed strong fluorescence at 487 nm (quantum yield (Φ<sub>f</sub>)=28.3 %) whereas NO<sub>2</sub> substituted <strong>TPA‐QNO<sub>2</sub></strong> exhibited relatively weak fluorescence at 610 nm (Φ<sub>f</sub>=4.3 %). Density functional theoretical (DFT) calculations also indicated reduction of optical bandgap with substituting electron withdrawing group. The donor‐acceptor structure with intramolecular charge transfer (ICT) resulted solvent polarity dependent fluorescence tuning. The presence of acid responsive quinoxaline group was utilized to demonstrate pH‐responsive fluorescence switching and dual state fluorescence was utilized for fabricating rewritable fluorescent platform. Thus, the present study provides a structural insight to develop dual state emissive triphenylamine–quinoxaline based bipolar materials for optoelectronic applications.</div></div>","PeriodicalId":130,"journal":{"name":"Asian Journal of Organic Chemistry","volume":"13 10","pages":"Article e202400282"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2193580724003076","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

A series of triphenylamine‐quinoxaline donor‐acceptor (bipolar) compounds (TPA‐QH, TPA‐QMe, TPA‐QCOOH and TPA‐QNO2) with different substituents were synthesized and investigated their fluorescence properties, including stimuli‐induced fluorescence responses in solution and the solid‐state. Single crystal structural analysis revealed non‐planar molecular conformation, substituent controlled intermolecular interactions and molecular packing in the crystal lattice. TPA‐QH, TPA‐QMe, TPA‐QCOOH and TPA‐QNO2 showed tunable solid‐state emission from green to red. TPA‐QH showed strong fluorescence at 487 nm (quantum yield (Φf)=28.3 %) whereas NO2 substituted TPA‐QNO2 exhibited relatively weak fluorescence at 610 nm (Φf=4.3 %). Density functional theoretical (DFT) calculations also indicated reduction of optical bandgap with substituting electron withdrawing group. The donor‐acceptor structure with intramolecular charge transfer (ICT) resulted solvent polarity dependent fluorescence tuning. The presence of acid responsive quinoxaline group was utilized to demonstrate pH‐responsive fluorescence switching and dual state fluorescence was utilized for fabricating rewritable fluorescent platform. Thus, the present study provides a structural insight to develop dual state emissive triphenylamine–quinoxaline based bipolar materials for optoelectronic applications.
三苯胺-喹喔啉衍生物中由取代基控制的从绿到红的可调荧光和 pH 值刺激诱导的可逆荧光转换
合成了一系列具有不同取代基的三苯胺-喹喔啉供体-受体(双极)化合物(TPA-QH、TPA-QMe、TPA-QCOOH 和 TPA-QNO2),并研究了它们的荧光特性,包括溶液和固态中刺激诱导的荧光反应。单晶结构分析显示了非平面分子构象、取代基控制的分子间相互作用以及晶格中的分子堆积。TPA-QH、TPA-QMe、TPA-QCOOH 和 TPA-QNO2 显示出从绿色到红色的可调固态发射。TPA-QH 在 487 纳米波长处显示出强烈的荧光(量子产率 (Φf) = 28.3%),而被二氧化氮取代的 TPA-QNO2 在 610 纳米波长处显示出相对较弱的荧光(Φf = 4.3%)。密度泛函理论(DFT)计算也表明,光带隙会随着取代的退电子基团而减小。分子内电荷转移(ICT)的供体-受体结构导致了依赖于溶剂极性的荧光调节。酸响应喹喔啉基团的存在被用来演示 pH 响应荧光切换,双态荧光被用来制造可重写荧光平台。因此,本研究为开发基于三苯胺-喹喔啉的光电应用双极材料提供了结构上的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
3.70%
发文量
372
期刊介绍: Organic chemistry is the fundamental science that stands at the heart of chemistry, biology, and materials science. Research in these areas is vigorous and truly international, with three major regions making almost equal contributions: America, Europe and Asia. Asia now has its own top international organic chemistry journal—the Asian Journal of Organic Chemistry (AsianJOC) The AsianJOC is designed to be a top-ranked international research journal and publishes primary research as well as critical secondary information from authors across the world. The journal covers organic chemistry in its entirety. Authors and readers come from academia, the chemical industry, and government laboratories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信