Radon–Nikodým property and Lau’s conjecture

Pub Date : 2024-04-19 DOI:10.1090/proc/16884
Andrzej Wiśnicki
{"title":"Radon–Nikodým property and Lau’s conjecture","authors":"Andrzej Wiśnicki","doi":"10.1090/proc/16884","DOIUrl":null,"url":null,"abstract":"<p>There is a long-standing problem, posed by A.T.-M. Lau [<italic>Fixed point theory and its applications</italic>, Academic Press, New York-London, 1976, pp. 121–129], whether left amenability is sufficient to ensure the existence of a common fixed point for every jointly weak<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Superscript asterisk\"> <mml:semantics> <mml:msup> <mml:mi/> <mml:mrow> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">^{\\ast }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> continuous nonexpansive semigroup action on a nonempty weak<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Superscript asterisk\"> <mml:semantics> <mml:msup> <mml:mi/> <mml:mrow> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">^{\\ast }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> compact convex set in a dual Banach space. In this note we discuss the current status of this problem and give a partial solution in the case of weak<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Superscript asterisk\"> <mml:semantics> <mml:msup> <mml:mi/> <mml:mrow> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">^{\\ast }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> compact convex sets with the Radon–Nikodým property.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There is a long-standing problem, posed by A.T.-M. Lau [Fixed point theory and its applications, Academic Press, New York-London, 1976, pp. 121–129], whether left amenability is sufficient to ensure the existence of a common fixed point for every jointly weak ^{\ast } continuous nonexpansive semigroup action on a nonempty weak ^{\ast } compact convex set in a dual Banach space. In this note we discuss the current status of this problem and give a partial solution in the case of weak ^{\ast } compact convex sets with the Radon–Nikodým property.

分享
查看原文
拉顿-尼科戴姆性质和刘氏猜想
A.T.-M. Lau [Fixed point theory and its applications, Academic Press, New York-London, 1976, pp.Lau [Fixed point theory and its applications, Academic Press, New York-London, 1976, pp.在本论文中,我们讨论了这一问题的现状,并给出了具有 Radon-Nikodým 性质的弱∗ ^{\ast } 紧凑凸集的部分解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信