Some maximum principles for parabolic mixed local/nonlocal operators

Pub Date : 2024-05-01 DOI:10.1090/proc/16899
Serena Dipierro, Edoardo Proietti Lippi, Enrico Valdinoci
{"title":"Some maximum principles for parabolic mixed local/nonlocal operators","authors":"Serena Dipierro, Edoardo Proietti Lippi, Enrico Valdinoci","doi":"10.1090/proc/16899","DOIUrl":null,"url":null,"abstract":"<p>The goal of this paper is to establish new Maximum Principles for parabolic equations in the framework of mixed local/nonlocal operators.</p> <p>In particular, these results apply to the case of mixed local/nonlocal Neumann boundary conditions, as introduced by Dipierro, Proietti Lippi, and Valdinoci [Ann. Inst. H. Poincaré C Anal. Non Linéaire 40 (2023), pp. 1093–1166].</p> <p>Moreover, they play an important role in the analysis of population dynamics involving the so-called Allee effect, which is performed by Dipierro, Proietti Lippi, and Valdinoci [J. Math. Biol. 89 (2024), Paper No. 19]. This is particularly relevant when studying biological populations, since the Allee effect detects a critical density below which the population is severely endangered and at risk of extinction.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this paper is to establish new Maximum Principles for parabolic equations in the framework of mixed local/nonlocal operators.

In particular, these results apply to the case of mixed local/nonlocal Neumann boundary conditions, as introduced by Dipierro, Proietti Lippi, and Valdinoci [Ann. Inst. H. Poincaré C Anal. Non Linéaire 40 (2023), pp. 1093–1166].

Moreover, they play an important role in the analysis of population dynamics involving the so-called Allee effect, which is performed by Dipierro, Proietti Lippi, and Valdinoci [J. Math. Biol. 89 (2024), Paper No. 19]. This is particularly relevant when studying biological populations, since the Allee effect detects a critical density below which the population is severely endangered and at risk of extinction.

分享
查看原文
抛物线局部/非局部混合算子的一些最大原则
本文的目的是在混合局部/非局部算子的框架内建立抛物方程的新最大原则。特别是,这些结果适用于混合局部/非局部诺伊曼边界条件的情况,正如迪皮埃罗、普罗埃蒂-利皮和瓦尔迪诺奇所介绍的那样[Ann. Inst. H. Poincaré C Anal. Non Linéaire 40 (2023), pp.]此外,它们在涉及所谓阿利效应的种群动态分析中也发挥着重要作用,迪皮埃罗、普罗埃蒂-利皮和瓦尔迪诺奇[J. Math. Biol. 89 (2024),论文编号 19]对此进行了研究。在研究生物种群时,这一点尤为重要,因为阿利效应可以检测到一个临界密度,低于这个密度,种群就会严重濒危,面临灭绝的危险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信