Prof. Dr. Shota Tsujimoto, Prof. Dr. Changhee Lee, Ryoich Nunokawa, Yeji Kim, Prof. Dr. Yuto Miyahara, Prof. Dr. Kohei Miyazaki, Prof. Dr. Takeshi Abe
{"title":"Kinetic Insights into Na Ion Transfer at the Carbon-Based Negative Electrode/Electrolyte Interfaces for Sodium-Ion Batteries","authors":"Prof. Dr. Shota Tsujimoto, Prof. Dr. Changhee Lee, Ryoich Nunokawa, Yeji Kim, Prof. Dr. Yuto Miyahara, Prof. Dr. Kohei Miyazaki, Prof. Dr. Takeshi Abe","doi":"10.1002/celc.202400275","DOIUrl":null,"url":null,"abstract":"<p>The relentless quest for sustainable and efficient energy storage solutions has propelled sodium-ion batteries (SIBs) to the forefront of research and development in the realm of rechargeable batteries. This mini review delves into the intricate interfacial kinetics of Na ion transfer within SIBs, with a special focus on the carbon-based negative electrode/electrolyte interfaces. By synthesizing insights from a myriad of studies encompassing experimental and theoretical analyses, we illuminate the critical role of electrode material properties and interfacial dynamics in dictating the kinetics of Na ion transfer for SIBs. Strategies for optimizing these parameters are scrutinized, revealing pathways to enhance the kinetic behavior of Na ions. Furthermore, emerging materials such as hard carbon, carbon nanospheres, and graphene-like graphite are evaluated for their potential to surmount existing limitations.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 16","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400275","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400275","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The relentless quest for sustainable and efficient energy storage solutions has propelled sodium-ion batteries (SIBs) to the forefront of research and development in the realm of rechargeable batteries. This mini review delves into the intricate interfacial kinetics of Na ion transfer within SIBs, with a special focus on the carbon-based negative electrode/electrolyte interfaces. By synthesizing insights from a myriad of studies encompassing experimental and theoretical analyses, we illuminate the critical role of electrode material properties and interfacial dynamics in dictating the kinetics of Na ion transfer for SIBs. Strategies for optimizing these parameters are scrutinized, revealing pathways to enhance the kinetic behavior of Na ions. Furthermore, emerging materials such as hard carbon, carbon nanospheres, and graphene-like graphite are evaluated for their potential to surmount existing limitations.
对可持续高效储能解决方案的不懈追求,促使钠离子电池(SIB)成为可充电电池领域的研发前沿。这篇微型综述深入探讨了钠离子电池中钠离子转移的复杂界面动力学,特别关注碳基负极/电解质界面。通过综合大量实验和理论分析研究的见解,我们阐明了电极材料特性和界面动力学在决定 SIB 的 Na 离子转移动力学中的关键作用。我们仔细研究了优化这些参数的策略,揭示了增强 Na 离子动力学行为的途径。此外,还评估了硬碳、碳纳米球和类石墨烯等新兴材料克服现有限制的潜力。
期刊介绍:
ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.