{"title":"Phase-Field Simulation of Grain Growth in Uranium Silicide Nuclear Fuel","authors":"Xiaoqiang Pan, Yongxiao La, Yuxuan Liao, Yifan Wang, Yonghong Lu, Wenbo Liu","doi":"10.3390/cryst14080691","DOIUrl":null,"url":null,"abstract":"Uranium silicide (U3Si2) is regarded as a viable fuel option for improving the safety of nuclear power plants. In the present work, phase-field simulations were employed to investigate grain growth phenomena, encompassing both isotropic and anisotropic grain growth. In simulations of isotropic grain growth, it is commonly assumed that the energy and mobility of the grain boundaries (GBs) remain constant, represented by average values. The calculated grain growth kinetic rate constant, K, exhibits a close correspondence with the experimental measurements, indicating a strong agreement between the two. In simulations of anisotropic grain growth, the values of GB energy and mobility are correlated with the angular disparity between GBs. The simulation results demonstrated that the growth rate of U3Si2 can be influenced by both the energy anisotropy and mobility anisotropy of GBs. Furthermore, the anisotropy in mobility results in a greater prevalence of low-angle GB distribution in comparison to high-angle GBs. However, the energy anisotropy of GBs does not impact the frequency distribution of the angle difference between GBs.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cryst14080691","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Uranium silicide (U3Si2) is regarded as a viable fuel option for improving the safety of nuclear power plants. In the present work, phase-field simulations were employed to investigate grain growth phenomena, encompassing both isotropic and anisotropic grain growth. In simulations of isotropic grain growth, it is commonly assumed that the energy and mobility of the grain boundaries (GBs) remain constant, represented by average values. The calculated grain growth kinetic rate constant, K, exhibits a close correspondence with the experimental measurements, indicating a strong agreement between the two. In simulations of anisotropic grain growth, the values of GB energy and mobility are correlated with the angular disparity between GBs. The simulation results demonstrated that the growth rate of U3Si2 can be influenced by both the energy anisotropy and mobility anisotropy of GBs. Furthermore, the anisotropy in mobility results in a greater prevalence of low-angle GB distribution in comparison to high-angle GBs. However, the energy anisotropy of GBs does not impact the frequency distribution of the angle difference between GBs.
期刊介绍:
Crystals (ISSN 2073-4352) is an open access journal that covers all aspects of crystalline material research. Crystals can act as a reference, and as a publication resource, to the community. It publishes reviews, regular research articles, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Full experimental details must be provided to enable the results to be reproduced. Crystals provides a forum for the advancement of our understanding of the nucleation, growth, processing, and characterization of crystalline materials. Their mechanical, chemical, electronic, magnetic, and optical properties, and their diverse applications, are all considered to be of importance.