Ceramics with Ultrahigh Permittivity Values: Compositions, Synthesis Methods, and Properties at Low and Medium Frequencies

IF 0.6 4区 材料科学 Q4 MATERIALS SCIENCE, CERAMICS
S. G. Ponomarev, V. E. Bazarova, I. D. Akin’shin, A. G. Mushtakov, M. V. Kornyushin, V. M. Kolomin, N. S. Karasev, D. A. Sokolov, A. V. Smirnov
{"title":"Ceramics with Ultrahigh Permittivity Values: Compositions, Synthesis Methods, and Properties at Low and Medium Frequencies","authors":"S. G. Ponomarev, V. E. Bazarova, I. D. Akin’shin, A. G. Mushtakov, M. V. Kornyushin, V. M. Kolomin, N. S. Karasev, D. A. Sokolov, A. V. Smirnov","doi":"10.1007/s10717-024-00671-4","DOIUrl":null,"url":null,"abstract":"<p>A review of dielectric materials with high (exceeding 10,000) values of relative permittivity is presented. Most of the compositions of these materials are based on systems that include ferroelectric and non-ferroelectric components, as well as solid solutions based thereon. Various approaches to increasing the permittivity of materials are considered, including doping, sintering atmosphere, grinding time, sintering temperature, and grain size. The effect of dopants and the synthesis method on the characteristics of capacitor ceramics that can be used in the low-frequency and high-frequency range are compared.</p>","PeriodicalId":579,"journal":{"name":"Glass and Ceramics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glass and Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s10717-024-00671-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

A review of dielectric materials with high (exceeding 10,000) values of relative permittivity is presented. Most of the compositions of these materials are based on systems that include ferroelectric and non-ferroelectric components, as well as solid solutions based thereon. Various approaches to increasing the permittivity of materials are considered, including doping, sintering atmosphere, grinding time, sintering temperature, and grain size. The effect of dopants and the synthesis method on the characteristics of capacitor ceramics that can be used in the low-frequency and high-frequency range are compared.

Abstract Image

具有超高孔隙率值的陶瓷:成分、合成方法及中低频特性
本文综述了具有高(超过 10,000 )相对介电率值的介电材料。这些材料的组成大多基于包含铁电和非铁电成分的系统,以及基于这些成分的固溶体。研究考虑了提高材料介电常数的各种方法,包括掺杂、烧结气氛、研磨时间、烧结温度和晶粒尺寸。比较了掺杂剂和合成方法对可用于低频和高频范围的电容器陶瓷特性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Glass and Ceramics
Glass and Ceramics 工程技术-材料科学:硅酸盐
CiteScore
1.00
自引率
16.70%
发文量
85
审稿时长
6-12 weeks
期刊介绍: Glass and Ceramics reports on advances in basic and applied research and plant production techniques in glass and ceramics. The journal''s broad coverage includes developments in the areas of silicate chemistry, mineralogy and metallurgy, crystal chemistry, solid state reactions, raw materials, phase equilibria, reaction kinetics, physicochemical analysis, physics of dielectrics, and refractories, among others.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信