{"title":"Global dynamics above the ground state energy for the energy-critical Klein-Gordon equation","authors":"Tristan Roy","doi":"10.1090/tran/9158","DOIUrl":null,"url":null,"abstract":"<p>Consider the focusing energy-critical Klein-Gordon equation in dimension <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d element-of StartSet 3 comma 4 comma 5 EndSet\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>∈</mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mn>4</mml:mn> <mml:mo>,</mml:mo> <mml:mn>5</mml:mn> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">d \\in \\{ 3,4,5 \\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartLayout Enlarged left-brace 1st Row 1st Column partial-differential Subscript t t Baseline u minus normal upper Delta u plus u 2nd Column a m p semicolon equals StartAbsoluteValue u EndAbsoluteValue Superscript StartFraction 4 Over d minus 2 EndFraction Baseline u comma 2nd Row 1st Column u left-parenthesis 0 comma x right-parenthesis 2nd Column a m p semicolon colon-equal f 0 left-parenthesis x right-parenthesis comma 3rd Row 1st Column partial-differential Subscript t Baseline u left-parenthesis 0 comma x right-parenthesis 2nd Column a m p semicolon colon-equal f 1 left-parenthesis x right-parenthesis EndLayout\"> <mml:semantics> <mml:mrow> <mml:mo>{</mml:mo> <mml:mtable columnalign=\"left left\" rowspacing=\".2em\" columnspacing=\"1em\" displaystyle=\"false\"> <mml:mtr> <mml:mtd> <mml:msub> <mml:mi mathvariant=\"normal\">∂</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> <mml:mi>t</mml:mi> </mml:mrow> </mml:msub> <mml:mi>u</mml:mi> <mml:mo>−</mml:mo> <mml:mi mathvariant=\"normal\">Δ</mml:mi> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>u</mml:mi> </mml:mtd> <mml:mtd> <mml:mi>a</mml:mi> <mml:mi>m</mml:mi> <mml:mi>p</mml:mi> <mml:mo>;</mml:mo> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>u</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mrow> <mml:mfrac> <mml:mn>4</mml:mn> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>−</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:mfrac> </mml:mrow> </mml:msup> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mtd> <mml:mtd> <mml:mi>a</mml:mi> <mml:mi>m</mml:mi> <mml:mi>p</mml:mi> <mml:mo>;</mml:mo> <mml:mo>≔</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:msub> <mml:mi mathvariant=\"normal\">∂</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> </mml:msub> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mtd> <mml:mtd> <mml:mi>a</mml:mi> <mml:mi>m</mml:mi> <mml:mi>p</mml:mi> <mml:mo>;</mml:mo> <mml:mo>≔</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mtd> </mml:mtr> </mml:mtable> <mml:mo fence=\"true\" stretchy=\"true\" symmetric=\"true\"/> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\begin {cases} \\partial _{tt} u - \\Delta u + u & = |u|^{\\frac {4}{d-2}} u, \\\\ u(0,x) & ≔f_{0}(x), \\\\ \\partial _{t} u(0,x) & ≔f_{1}(x) \\end{cases} \\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> with data <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis f 0 comma f 1 right-parenthesis element-of script upper H colon-equal upper H Superscript 1 Baseline times upper L squared\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mi mathvariant=\"script\">H</mml:mi> </mml:mrow> <mml:mo>≔</mml:mo> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo>×</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(f_{0},f_{1}) \\in \\mathcal {H} ≔H^{1} \\times L^{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We describe the global dynamics of real-valued solutions of which the energy is slightly larger than that of the ground states’. We classify the flows of the solutions that are ejected from a small neighborhood of the ground states or that are away from them. The classification relies upon a modification of the arguments of Payne and Sattinger [Israel J. Math. 22 (1975), pp. 273–303] to prove blow-up in finite time, and a modification of the arguments of Ibrahim, Masmoudi, and Nakanishi [Anal. PDE 4 (2011), pp. 405–460], Kenig and Merle [Invent. Math. 166 (2006), pp. 645–675; Acta Math. 201 (2008), pp. 147–212], and Krieger, Nakanishi, and Schlag [Discrete Contin. Dyn. Syst. 33 (2013), pp. 2423–2450] to prove scattering as <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t right-arrow plus-or-minus normal infinity\"> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">→</mml:mo> <mml:mo>±</mml:mo> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">t \\rightarrow \\pm \\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. There are three main differences between this paper and that of Krieger, Nakanishi, and Schlag [Discrete Contin. Dyn. Syst. 33 (2013), pp. 2423–2450]. The first one is the lack of scaling symmetry. The second one appears in the proof of the ejection lemma: one has to control the mass in the ejection process. The third one appears in the proof of the one-pass lemma: in the worst scenario, one cannot use the equipartition of energy and therefore one has to prove a decay estimate which allows to use an argument of Bourgain [J. Amer. Math. Soc. 12 (1999), pp. 145–171].</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9158","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Consider the focusing energy-critical Klein-Gordon equation in dimension d∈{3,4,5}d \in \{ 3,4,5 \}{∂ttu−Δu+uamp;=|u|4d−2u,u(0,x)amp;≔f0(x),∂tu(0,x)amp;≔f1(x)\begin{equation*} \begin {cases} \partial _{tt} u - \Delta u + u & = |u|^{\frac {4}{d-2}} u, \\ u(0,x) & ≔f_{0}(x), \\ \partial _{t} u(0,x) & ≔f_{1}(x) \end{cases} \end{equation*} with data (f0,f1)∈H≔H1×L2(f_{0},f_{1}) \in \mathcal {H} ≔H^{1} \times L^{2}. We describe the global dynamics of real-valued solutions of which the energy is slightly larger than that of the ground states’. We classify the flows of the solutions that are ejected from a small neighborhood of the ground states or that are away from them. The classification relies upon a modification of the arguments of Payne and Sattinger [Israel J. Math. 22 (1975), pp. 273–303] to prove blow-up in finite time, and a modification of the arguments of Ibrahim, Masmoudi, and Nakanishi [Anal. PDE 4 (2011), pp. 405–460], Kenig and Merle [Invent. Math. 166 (2006), pp. 645–675; Acta Math. 201 (2008), pp. 147–212], and Krieger, Nakanishi, and Schlag [Discrete Contin. Dyn. Syst. 33 (2013), pp. 2423–2450] to prove scattering as t→±∞t \rightarrow \pm \infty. There are three main differences between this paper and that of Krieger, Nakanishi, and Schlag [Discrete Contin. Dyn. Syst. 33 (2013), pp. 2423–2450]. The first one is the lack of scaling symmetry. The second one appears in the proof of the ejection lemma: one has to control the mass in the ejection process. The third one appears in the proof of the one-pass lemma: in the worst scenario, one cannot use the equipartition of energy and therefore one has to prove a decay estimate which allows to use an argument of Bourgain [J. Amer. Math. Soc. 12 (1999), pp. 145–171].
考虑在维度 d∈ { 3 , 4 , 5 } d \in \{ 3,4,5 \} 中的聚焦能量临界克莱因-戈登方程。 { ∂ t t u - Δ u + u a m p ; = | u | 4 d - 2 u , u ( 0 , x ) a m p ; ∂ f 0 ( x ) , ∂ t u ( 0 , x ) a m p ; ∂ f 1 ( x ) \begin{equation*}\开始\partial _{tt} u - \Delta u + u & = |u|^{frac {4}{d-2}} u, \ u(0,x) & ≔f_{0}(x), \ \partial _{t} u(0,x) & ≔f_{1}(x) \end{cases}\end{equation*} with data ( f 0 , f 1 ) ∈ H ≔ H 1 × L 2 (f_{0},f_{1}) \in \mathcal {H} ≔H^{1}\乘以 L^{2} 。我们描述了能量略大于基态的实值解的全局动力学。我们对从基态的小邻域喷出或远离基态的解的流动进行了分类。这种分类依赖于对 Payne 和 Sattinger [Israel J. Math. 22 (1975),pp. 273-303] 证明在有限时间内炸毁的论证的修改,以及对 Ibrahim、Masmoudi 和 Nakanishi [Anal. PDE 4 (2011),pp.405-460], Kenig 和 Merle [Invent. Math. 166 (2006), pp.本文与 Krieger、Nakanishi 和 Schlag [Discrete Contin. Dyn. Syst.第一个是缺乏缩放对称性。第二个问题出现在弹射定理的证明中:我们必须控制弹射过程中的质量。第三点出现在单程稃的证明中:在最糟糕的情况下,我们不能使用能量等分,因此我们必须证明一种衰变估计,从而可以使用布尔甘的论证[J. Amer. Math. Soc. 12 (1999),第 145-171 页]。
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.