{"title":"A spatial analysis of the economic returns to land-use change from agriculture to renewable energy production: Evidence from Ireland","authors":"Cathal Geoghegan, Cathal O'Donoghue","doi":"10.1111/gcbb.13185","DOIUrl":null,"url":null,"abstract":"<p>Countries are looking to reduce their agricultural sector's carbon footprint while encouraging economic and environmental sustainability. One proposed method of making agriculture more sustainable while maintaining farm incomes is through the production of bioenergy feedstocks. We examine the spatial aspect of the production of renewable energy feedstocks in Ireland. Two feedstocks are looked at—grass silage and short-rotation coppice (SRC) willow. Spatial microsimulation analysis is utilised to assess the spatial suitability for alternative land uses, simulating land-use change to compare economic returns with the current agricultural use. A farm-based carbon subsidy is modelled based on avoided agricultural emissions and carbon sequestered. We find that midlands counties, especially those in the north midlands, have the highest proportion of land where feedstocks would be more profitable than the current agricultural use. Counties on the western seaboard have the lowest proportion of land where feedstocks would give greater returns. The amount of land where feedstocks are more profitable increases as greater carbon subsidies are provided. Of the two feedstocks assessed, SRC willow cultivation is more profitable than grass silage production. The overwhelming majority of land where producing feedstocks would be more profitable has cattle farming as its current use.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 9","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13185","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13185","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Countries are looking to reduce their agricultural sector's carbon footprint while encouraging economic and environmental sustainability. One proposed method of making agriculture more sustainable while maintaining farm incomes is through the production of bioenergy feedstocks. We examine the spatial aspect of the production of renewable energy feedstocks in Ireland. Two feedstocks are looked at—grass silage and short-rotation coppice (SRC) willow. Spatial microsimulation analysis is utilised to assess the spatial suitability for alternative land uses, simulating land-use change to compare economic returns with the current agricultural use. A farm-based carbon subsidy is modelled based on avoided agricultural emissions and carbon sequestered. We find that midlands counties, especially those in the north midlands, have the highest proportion of land where feedstocks would be more profitable than the current agricultural use. Counties on the western seaboard have the lowest proportion of land where feedstocks would give greater returns. The amount of land where feedstocks are more profitable increases as greater carbon subsidies are provided. Of the two feedstocks assessed, SRC willow cultivation is more profitable than grass silage production. The overwhelming majority of land where producing feedstocks would be more profitable has cattle farming as its current use.
期刊介绍:
GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used.
Key areas covered by the journal:
Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis).
Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW).
Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues.
Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems.
Bioenergy Policy: legislative developments affecting biofuels and bioenergy.
Bioenergy Systems Analysis: examining biological developments in a whole systems context.