{"title":"(\n 1\n ,\n p\n )\n \n $(1,p)$\n -Sobolev spaces based on strongly local Dirichlet forms","authors":"Kazuhiro Kuwae","doi":"10.1002/mana.202400025","DOIUrl":null,"url":null,"abstract":"<p>In the framework of quasi-regular strongly local Dirichlet form <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>E</mi>\n <mo>,</mo>\n <mi>D</mi>\n <mo>(</mo>\n <mi>E</mi>\n <mo>)</mo>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathcal {E},D(\\mathcal {E}))$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>;</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^2(X;\\mathfrak {m})$</annotation>\n </semantics></math> admitting minimal <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$\\mathcal {E}$</annotation>\n </semantics></math>-dominant measure <span></span><math>\n <semantics>\n <mi>μ</mi>\n <annotation>$\\mu$</annotation>\n </semantics></math>, we construct a natural <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-energy functional <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>E</mi>\n <mrow>\n <mspace></mspace>\n <mi>p</mi>\n </mrow>\n </msup>\n <mo>,</mo>\n <mi>D</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>E</mi>\n <mrow>\n <mspace></mspace>\n <mi>p</mi>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathcal {E}^{\\,p},D(\\mathcal {E}^{\\,p}))$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>;</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^p(X;\\mathfrak {m})$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(1,p)$</annotation>\n </semantics></math>-Sobolev space <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mo>∥</mo>\n <mo>·</mo>\n <msub>\n <mo>∥</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(H^{1,p}(X),\\Vert \\cdot \\Vert _{H^{1,p}})$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>∈</mo>\n <mo>]</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mo>+</mo>\n <mi>∞</mi>\n <mo>[</mo>\n </mrow>\n <annotation>$p\\in]1,+\\infty [$</annotation>\n </semantics></math>. In this paper, we establish the Clarkson-type inequality for <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mo>∥</mo>\n <mo>·</mo>\n <msub>\n <mo>∥</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(H^{1,p}(X),\\Vert \\cdot \\Vert _{H^{1,p}})$</annotation>\n </semantics></math>. As a consequence, <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mo>∥</mo>\n <mo>·</mo>\n <msub>\n <mo>∥</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(H^{1,p}(X),\\Vert \\cdot \\Vert _{H^{1,p}})$</annotation>\n </semantics></math> is a uniformly convex Banach space, hence it is reflexive. Based on the reflexivity of <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mo>∥</mo>\n <mo>·</mo>\n <msub>\n <mo>∥</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(H^{1,p}(X),\\Vert \\cdot \\Vert _{H^{1,p}})$</annotation>\n </semantics></math>, we prove that (generalized) normal contraction operates on <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>E</mi>\n <mrow>\n <mspace></mspace>\n <mi>p</mi>\n </mrow>\n </msup>\n <mo>,</mo>\n <mi>D</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>E</mi>\n <mrow>\n <mspace></mspace>\n <mi>p</mi>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathcal {E}^{\\,p},D(\\mathcal {E}^{\\,p}))$</annotation>\n </semantics></math>, which has been shown in the case of various concrete settings, but has not been proved for such a general framework. Moreover, we prove that <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(1,p)$</annotation>\n </semantics></math>-capacity <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Cap</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>A</mi>\n <mo>)</mo>\n </mrow>\n <mo><</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>${\\rm Cap}_{1,p}(A)&lt;\\infty$</annotation>\n </semantics></math> for open set <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> admits an equilibrium potential <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>e</mi>\n <mi>A</mi>\n </msub>\n <mo>∈</mo>\n <mi>D</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>E</mi>\n <mrow>\n <mspace></mspace>\n <mi>p</mi>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$e_A\\in D(\\mathcal {E}^{\\,p})$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>≤</mo>\n <msub>\n <mi>e</mi>\n <mi>A</mi>\n </msub>\n <mo>≤</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$0\\le e_A\\le 1$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>-a.e. and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>e</mi>\n <mi>A</mi>\n </msub>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$e_A=1$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>-a.e. on <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 10","pages":"3723-3740"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400025","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the framework of quasi-regular strongly local Dirichlet form on admitting minimal -dominant measure , we construct a natural -energy functional on and -Sobolev space for . In this paper, we establish the Clarkson-type inequality for . As a consequence, is a uniformly convex Banach space, hence it is reflexive. Based on the reflexivity of , we prove that (generalized) normal contraction operates on , which has been shown in the case of various concrete settings, but has not been proved for such a general framework. Moreover, we prove that -capacity for open set admits an equilibrium potential with -a.e. and -a.e. on .
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index