Local and global solutions on arcs for the Ericksen–Leslie problem in R N $\mathbb {R}^N$

Pub Date : 2024-07-29 DOI:10.1002/mana.202300253
Daniele Barbera, Vladimir Georgiev
{"title":"Local and global solutions on arcs for the Ericksen–Leslie problem in \n \n \n R\n N\n \n $\\mathbb {R}^N$","authors":"Daniele Barbera,&nbsp;Vladimir Georgiev","doi":"10.1002/mana.202300253","DOIUrl":null,"url":null,"abstract":"<p>The work deals with the Ericksen–Leslie system for nematic liquid crystals on the space <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>N</mi>\n </msup>\n <annotation>$\\mathbb {R}^N$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>≥</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$N\\ge 3$</annotation>\n </semantics></math>. In our work, we suppose the initial condition <span></span><math>\n <semantics>\n <msub>\n <mi>v</mi>\n <mn>0</mn>\n </msub>\n <annotation>$v_0$</annotation>\n </semantics></math> stays on an arc connecting two fixed orthogonal vectors on the unit sphere. Thanks to this geometric assumption, we prove through energy a priori estimates the local existence and the global existence for small initial data of a solution\n\n </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The work deals with the Ericksen–Leslie system for nematic liquid crystals on the space R N $\mathbb {R}^N$ with N 3 $N\ge 3$ . In our work, we suppose the initial condition v 0 $v_0$ stays on an arc connecting two fixed orthogonal vectors on the unit sphere. Thanks to this geometric assumption, we prove through energy a priori estimates the local existence and the global existence for small initial data of a solution

分享
查看原文
RN$\mathbb {R}^N$ 中埃里克森-莱斯利问题弧上的局部和全局解
我们的研究涉及有......空间的向列液晶的埃里克森-莱斯利系统。 在我们的研究中,我们假设初始条件停留在连接单位球面上两个固定正交向量的弧线上。得益于这一几何假设,我们通过能量先验估计证明了在小初始数据条件下,Ⅳ 的解的局部存在性和全局存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信