{"title":"On the Cauchy problem for a two-component higher order Camassa–Holm system","authors":"Shouming Zhou, Luhang Zhou, Rong Chen","doi":"10.1002/mana.202300382","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we focus on the well-posedness, blow-up phenomena, and continuity of the data-to-solution map of the Cauchy problem for a two-component higher order Camassa–Holm (CH) system. The local well-posedness is established in Besov spaces <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>B</mi>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n <mfrac>\n <mn>1</mn>\n <mi>p</mi>\n </mfrac>\n </msubsup>\n <mo>×</mo>\n <msubsup>\n <mi>B</mi>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mo>+</mo>\n <mfrac>\n <mn>1</mn>\n <mi>p</mi>\n </mfrac>\n </mrow>\n </msubsup>\n </mrow>\n <annotation>$B_{p,1}^{\\frac{1}{p}} \\times B_{p,1}^{2+\\frac{1}{p}}$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>≤</mo>\n <mi>p</mi>\n <mo><</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1 \\le p &lt; \\infty$</annotation>\n </semantics></math>, which improves the local well-posedness result proved before in Tang and Liu [Z. Angew. Math. Phys. 66 (2015), 1559–1580], Ye and Yin [arXiv preprint arXiv:2109.00948 (2021)], Zhang and Li [Nonlinear Anal. Real World Appl. 35 (2017), 414–440], and Zhou [Math. Nachr. 291 (2018), no. 10, 1595–1619]. Next, we consider the continuity of the solution-to-data map, that is, the ill-posedness is derived in Besov space <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>B</mi>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>∞</mi>\n </mrow>\n <mrow>\n <mi>s</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msubsup>\n <mo>×</mo>\n <msubsup>\n <mi>B</mi>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>∞</mi>\n </mrow>\n <mi>s</mi>\n </msubsup>\n </mrow>\n <annotation>$B_{p,\\infty }^{s - 2} \\times B_{p,\\infty }^s$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>≤</mo>\n <mi>p</mi>\n <mo>≤</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1 \\le p \\le \\infty$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mo>></mo>\n <mi>max</mi>\n <mo>{</mo>\n <mn>2</mn>\n <mo>+</mo>\n <mfrac>\n <mn>1</mn>\n <mi>p</mi>\n </mfrac>\n <mo>,</mo>\n <mfrac>\n <mn>5</mn>\n <mn>2</mn>\n </mfrac>\n <mo>}</mo>\n </mrow>\n <annotation>$s&gt;\\max \\lbrace 2+\\frac{1}{p},\\frac{5}{2}\\rbrace$</annotation>\n </semantics></math>. Then, the nonuniform continuous and Hölder continuous dependence on initial data for this system are also presented in Besov spaces <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>B</mi>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>r</mi>\n </mrow>\n <mrow>\n <mi>s</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msubsup>\n <mo>×</mo>\n <msubsup>\n <mi>B</mi>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>r</mi>\n </mrow>\n <mi>s</mi>\n </msubsup>\n </mrow>\n <annotation>$B_{p,r}^{s - 2} \\times B_{p,r}^s$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>≤</mo>\n <mi>p</mi>\n <mo>,</mo>\n <mi>r</mi>\n <mo><</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1 \\le p,r &lt; \\infty$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mo>></mo>\n <mi>max</mi>\n <mo>{</mo>\n <mrow>\n <mn>2</mn>\n <mo>+</mo>\n <mfrac>\n <mn>1</mn>\n <mi>p</mi>\n </mfrac>\n <mo>,</mo>\n <mfrac>\n <mn>5</mn>\n <mn>2</mn>\n </mfrac>\n </mrow>\n <mo>}</mo>\n </mrow>\n <annotation>$s &gt; \\max \\lbrace {2+\\frac{1}{p},\\frac{5}{2}}\\rbrace$</annotation>\n </semantics></math>. Finally, the precise blow-up criteria for the strong solutions of the two-component higher order CH system is determined in the lowest Sobolev space <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mrow>\n <mi>s</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <mo>×</mo>\n <msup>\n <mi>H</mi>\n <mi>s</mi>\n </msup>\n </mrow>\n <annotation>$H^{s-2}\\times H^s$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mo>></mo>\n <mfrac>\n <mn>5</mn>\n <mn>2</mn>\n </mfrac>\n </mrow>\n <annotation>$s&gt;\\frac{5}{2}$</annotation>\n </semantics></math>, which improves the blow-up criteria result established before in He and Yin [Discrete Contin. Dyn. Syst. 37 (2016), no. 3, 1509–1537] and Zhou [Math. Nachr. 291 (2018), no. 10, 1595–1619].</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we focus on the well-posedness, blow-up phenomena, and continuity of the data-to-solution map of the Cauchy problem for a two-component higher order Camassa–Holm (CH) system. The local well-posedness is established in Besov spaces with , which improves the local well-posedness result proved before in Tang and Liu [Z. Angew. Math. Phys. 66 (2015), 1559–1580], Ye and Yin [arXiv preprint arXiv:2109.00948 (2021)], Zhang and Li [Nonlinear Anal. Real World Appl. 35 (2017), 414–440], and Zhou [Math. Nachr. 291 (2018), no. 10, 1595–1619]. Next, we consider the continuity of the solution-to-data map, that is, the ill-posedness is derived in Besov space with and . Then, the nonuniform continuous and Hölder continuous dependence on initial data for this system are also presented in Besov spaces with and . Finally, the precise blow-up criteria for the strong solutions of the two-component higher order CH system is determined in the lowest Sobolev space with , which improves the blow-up criteria result established before in He and Yin [Discrete Contin. Dyn. Syst. 37 (2016), no. 3, 1509–1537] and Zhou [Math. Nachr. 291 (2018), no. 10, 1595–1619].