{"title":"Linearized Decoupled Mass and Energy Conservation CN Galerkin FEM for the Coupled Nonlinear Schrödinger System","authors":"Dongyang Shi, Zhenqi Qi","doi":"10.1007/s10915-024-02632-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a linearized decoupled mass and energy conservation Crank-Nicolson (CN) fully-discrete scheme is proposed for the coupled nonlinear Schrödinger (CNLS) system with the conforming bilinear Galerkin finite element method (FEM), and the unconditional supercloseness and superconvergence error estimates in <span>\\(H^1\\)</span>-norm are deduced rigorously. Firstly, with the aid of the popular time-space splitting technique, that is, by introducing a suitable time discrete system, the error is divided into two parts, the time error and spatial error, the boundedness of numerical solution in <span>\\(L^\\infty \\)</span>-norm is derived strictly without any constraint between the mesh size <i>h</i> and the time step <span>\\(\\tau \\)</span>. Then, thanks to the high accuracy result between the interpolation and Ritz projection, the unconditional superclose error estimate is obtained, and the corresponding unconditional superconvergence result is acquired through the interpolation post-processing technique. At last, some numerical results are supplied to verify the theoretical analysis.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"81 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02632-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a linearized decoupled mass and energy conservation Crank-Nicolson (CN) fully-discrete scheme is proposed for the coupled nonlinear Schrödinger (CNLS) system with the conforming bilinear Galerkin finite element method (FEM), and the unconditional supercloseness and superconvergence error estimates in \(H^1\)-norm are deduced rigorously. Firstly, with the aid of the popular time-space splitting technique, that is, by introducing a suitable time discrete system, the error is divided into two parts, the time error and spatial error, the boundedness of numerical solution in \(L^\infty \)-norm is derived strictly without any constraint between the mesh size h and the time step \(\tau \). Then, thanks to the high accuracy result between the interpolation and Ritz projection, the unconditional superclose error estimate is obtained, and the corresponding unconditional superconvergence result is acquired through the interpolation post-processing technique. At last, some numerical results are supplied to verify the theoretical analysis.
期刊介绍:
Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering.
The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.