A stable meshfree method for simulations of munition penetration into earth

IF 8.7 2区 工程技术 Q1 Mathematics
Mohammed Mujtaba Atif, Sheng-Wei Chi, Xuejun Li, Jianfei Tian
{"title":"A stable meshfree method for simulations of munition penetration into earth","authors":"Mohammed Mujtaba Atif, Sheng-Wei Chi, Xuejun Li, Jianfei Tian","doi":"10.1007/s00366-024-02028-5","DOIUrl":null,"url":null,"abstract":"<p>Meshfree methods, such as the Reproducing Kernel Particle Method, have been proven advantageous in modeling excessive deformation problems involving material separation, fracture, impact, etc. However, the domain integration in RKPM remains challenging due to instability and sub-optimal convergence for high strain rate events. Although some novel developments alleviate the above issue, they are either computationally expensive or require evaluating the contour integral, which is not straightforward to obtain in contact and material separation problems using meshfree discretization. This work develops a simple and stable integration method based on the extension of modified Simpson’s rule. The method is free from conforming subdomains and can straightforwardly be applied to the meshfree formulation with updated configuration. To model penetration into the earth, a standard viscous boundary is introduced to address the issue of reflecting waves from the truncated computational domain for the ground target. The numerical results are validated with experimental data for various geo-materials and experimental setups.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"74 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering with Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00366-024-02028-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Meshfree methods, such as the Reproducing Kernel Particle Method, have been proven advantageous in modeling excessive deformation problems involving material separation, fracture, impact, etc. However, the domain integration in RKPM remains challenging due to instability and sub-optimal convergence for high strain rate events. Although some novel developments alleviate the above issue, they are either computationally expensive or require evaluating the contour integral, which is not straightforward to obtain in contact and material separation problems using meshfree discretization. This work develops a simple and stable integration method based on the extension of modified Simpson’s rule. The method is free from conforming subdomains and can straightforwardly be applied to the meshfree formulation with updated configuration. To model penetration into the earth, a standard viscous boundary is introduced to address the issue of reflecting waves from the truncated computational domain for the ground target. The numerical results are validated with experimental data for various geo-materials and experimental setups.

Abstract Image

模拟弹药入土的稳定无网格方法
事实证明,无网格方法(如重现核粒子法)在涉及材料分离、断裂、冲击等过度变形问题的建模中具有优势。然而,由于高应变率事件的不稳定性和次优收敛性,RKPM 的域集成仍然具有挑战性。虽然一些新的发展缓解了上述问题,但它们要么计算成本高昂,要么需要评估轮廓积分,而在使用无网格离散化的接触和材料分离问题中,这并不容易获得。本研究基于修正辛普森法则的扩展,开发了一种简单稳定的积分方法。该方法不受符合子域的限制,可直接应用于更新配置的无网格计算。为了建立穿透地球的模型,引入了标准粘性边界,以解决地面目标的截断计算域反射波问题。数值结果与不同地质材料和实验设置的实验数据进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering with Computers
Engineering with Computers 工程技术-工程:机械
CiteScore
16.50
自引率
2.30%
发文量
203
审稿时长
9 months
期刊介绍: Engineering with Computers is an international journal dedicated to simulation-based engineering. It features original papers and comprehensive reviews on technologies supporting simulation-based engineering, along with demonstrations of operational simulation-based engineering systems. The journal covers various technical areas such as adaptive simulation techniques, engineering databases, CAD geometry integration, mesh generation, parallel simulation methods, simulation frameworks, user interface technologies, and visualization techniques. It also encompasses a wide range of application areas where engineering technologies are applied, spanning from automotive industry applications to medical device design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信