Jing Ai, Yu Wang, Liyuan Li, Jianqiang Wang, Te Bai, Shunai Che, Lu Han
{"title":"Determination of multilevel chirality in nickel molybdate films by electron crystallography","authors":"Jing Ai, Yu Wang, Liyuan Li, Jianqiang Wang, Te Bai, Shunai Che, Lu Han","doi":"10.1007/s12274-024-6865-1","DOIUrl":null,"url":null,"abstract":"<p>Chiral inorganic materials have attracted great attention owning to their unique physical and chemical properties attributed to the symmetry-breaking of their nanostructures. Chiral inorganic materials can be endowed with chiral geometric configurations from achiral space group crystals through lattice twisting, screw dislocations or hierarchical self-assembled spiral morphologies, showing various characteristic chiral anisotropy. However, the multilevel chirality in chiral nickel molybdate films (CNMFs) remains to be elaborately excavated. In this paper, we report three hierarchical levels of chirality in CNMFs, spanning from the atomic to the micron scale, including primary helically coiled nanoflakes with twisted atomic crystal lattices, secondary helical stacking of layered nanoflakes, and tertiary asymmetric morphology between adjacent nanoparticles. Our findings may enrich the chiral self-assembly structural types and provide valuable insights for the comprehensive analysis path of hierarchical chiral crystals.\n</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"7 1","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12274-024-6865-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chiral inorganic materials have attracted great attention owning to their unique physical and chemical properties attributed to the symmetry-breaking of their nanostructures. Chiral inorganic materials can be endowed with chiral geometric configurations from achiral space group crystals through lattice twisting, screw dislocations or hierarchical self-assembled spiral morphologies, showing various characteristic chiral anisotropy. However, the multilevel chirality in chiral nickel molybdate films (CNMFs) remains to be elaborately excavated. In this paper, we report three hierarchical levels of chirality in CNMFs, spanning from the atomic to the micron scale, including primary helically coiled nanoflakes with twisted atomic crystal lattices, secondary helical stacking of layered nanoflakes, and tertiary asymmetric morphology between adjacent nanoparticles. Our findings may enrich the chiral self-assembly structural types and provide valuable insights for the comprehensive analysis path of hierarchical chiral crystals.
期刊介绍:
Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.