Constructing an OH−-enriched microenvironment on the electrode surface for natural seawater electrolysis

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jiaxin Guo, Ruguang Wang, Quanlu Wang, Ruize Ma, Jisi Li, Erling Zhao, Jieqiong Shan, Tao Ling
{"title":"Constructing an OH−-enriched microenvironment on the electrode surface for natural seawater electrolysis","authors":"Jiaxin Guo, Ruguang Wang, Quanlu Wang, Ruize Ma, Jisi Li, Erling Zhao, Jieqiong Shan, Tao Ling","doi":"10.1007/s12274-024-6873-1","DOIUrl":null,"url":null,"abstract":"<p>Powered by clean energy, the hydrogen fuel production from seawater electrolysis is a sustainable green hydrogen technology, however, chlorine corrosion and correlative oxidation reactions severely erode the catalysts. Our previous work demonstrates that direct seawater electrolysis without a desalination process and strong alkali addition can be realized by introducing a hard Lewis acid oxide on the catalyst surface to capture OH<sup>−</sup>. However, the criteria for selecting Lewis acid oxides and the origin of OH<sup>−</sup> enrichment in chlorine chemistry inhibition on the catalyst surface remain unexplored. Here, we compare the ability of a series of Lewis acid oxides with different acidity constants (pKa), including MnO<sub>2</sub>, Fe<sub>2</sub>O<sub>3</sub>, and Cr<sub>2</sub>O<sub>3</sub>, to enrich OH<sup>−</sup> on the Co<sub>3</sub>O<sub>4</sub> anode catalyst surface. Comprehensive analyses suggest that the lower pKa value of the Lewis acid oxide, the higher concentration of OH<sup>−</sup> enriched on Co<sub>3</sub>O<sub>4</sub> surface, and the lower Cl<sup>−</sup> concentration. As established correlation among pKa of Lewis acid oxide, OH<sup>−</sup> enrichment and Cl<sup>−</sup> repulsion provide direct guidance for future design of highly active, selective and durable catalysts for natural seawater electrolysis.\n</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":null,"pages":null},"PeriodicalIF":9.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12274-024-6873-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Powered by clean energy, the hydrogen fuel production from seawater electrolysis is a sustainable green hydrogen technology, however, chlorine corrosion and correlative oxidation reactions severely erode the catalysts. Our previous work demonstrates that direct seawater electrolysis without a desalination process and strong alkali addition can be realized by introducing a hard Lewis acid oxide on the catalyst surface to capture OH. However, the criteria for selecting Lewis acid oxides and the origin of OH enrichment in chlorine chemistry inhibition on the catalyst surface remain unexplored. Here, we compare the ability of a series of Lewis acid oxides with different acidity constants (pKa), including MnO2, Fe2O3, and Cr2O3, to enrich OH on the Co3O4 anode catalyst surface. Comprehensive analyses suggest that the lower pKa value of the Lewis acid oxide, the higher concentration of OH enriched on Co3O4 surface, and the lower Cl concentration. As established correlation among pKa of Lewis acid oxide, OH enrichment and Cl repulsion provide direct guidance for future design of highly active, selective and durable catalysts for natural seawater electrolysis.

Abstract Image

为天然海水电解在电极表面构建富含 OH 的微环境
以清洁能源为动力,利用海水电解生产氢燃料是一种可持续发展的绿色制氢技术,但氯腐蚀和相关氧化反应会严重侵蚀催化剂。我们之前的研究表明,通过在催化剂表面引入硬质路易斯酸氧化物来捕捉 OH-,可以实现无需脱盐过程和强碱添加的直接海水电解。然而,选择路易斯酸氧化物的标准以及催化剂表面氯化学抑制中 OH- 富集的来源仍有待探索。在此,我们比较了一系列具有不同酸度常数 (pKa) 的路易斯酸氧化物(包括 MnO2、Fe2O3 和 Cr2O3)在 Co3O4 阳极催化剂表面富集 OH- 的能力。综合分析表明,路易斯酸氧化物的 pKa 值越低,Co3O4 表面富集的 OH- 浓度越高,Cl- 浓度越低。路易斯酸氧化物的 pKa 值、OH- 富集和 Cl- 排斥之间已建立的相关性为今后设计用于天然海水电解的高活性、选择性和耐久性催化剂提供了直接指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信