Sri Harhsa Swarna Kumar V, Balaji R, Lakshman Neelakantan, Ramya K
{"title":"Patterned Pt-TiO2 coated flow field plates in PEM water electrolyzers for hydrogen production","authors":"Sri Harhsa Swarna Kumar V, Balaji R, Lakshman Neelakantan, Ramya K","doi":"10.1007/s10008-024-06016-z","DOIUrl":null,"url":null,"abstract":"<div><p>This work investigates the use of Ti6Al4V as flow field plates in PEM-based electrolyzer stacks, utilizing its good corrosion resistance and high mechanical strength. The study explores the development of durable conductive coatings on Ti6Al4V surfaces. The coated surfaces are characterized by X-ray diffraction (XRD), showing the characteristic peaks of Pt deposited and the presence of Pt, PtO<sub>2</sub>, and TiO<sub>2</sub> after thermal oxidation. Field emission scanning electron microscopy reveals a uniform Pt coating on Ti6Al4V with a thickness of 2–3 µm. Potentiodynamic studies revealed improved corrosion resistance with a corrosion current density of 2.1 µA·cm⁻<sup>2</sup> in Ti6Al4V-PA-AD-TO compared to Ti6Al4V. Stability under 2 V vs. SHE for 5 h in a PEM water electrolyzer anodic environment is demonstrated, along with an evaluation of performance in a PEM electrolyzer single cell. The durability of the developed coating is assessed over 100 h in a single-cell setup, offering insights into cost-effective PEM-based electrolyzer stacks. The reduction of reliance on precious metals and the enhancement of durability provide a promising method for achieving economic viability in the production of hydrogen through water electrolysis.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-024-06016-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
This work investigates the use of Ti6Al4V as flow field plates in PEM-based electrolyzer stacks, utilizing its good corrosion resistance and high mechanical strength. The study explores the development of durable conductive coatings on Ti6Al4V surfaces. The coated surfaces are characterized by X-ray diffraction (XRD), showing the characteristic peaks of Pt deposited and the presence of Pt, PtO2, and TiO2 after thermal oxidation. Field emission scanning electron microscopy reveals a uniform Pt coating on Ti6Al4V with a thickness of 2–3 µm. Potentiodynamic studies revealed improved corrosion resistance with a corrosion current density of 2.1 µA·cm⁻2 in Ti6Al4V-PA-AD-TO compared to Ti6Al4V. Stability under 2 V vs. SHE for 5 h in a PEM water electrolyzer anodic environment is demonstrated, along with an evaluation of performance in a PEM electrolyzer single cell. The durability of the developed coating is assessed over 100 h in a single-cell setup, offering insights into cost-effective PEM-based electrolyzer stacks. The reduction of reliance on precious metals and the enhancement of durability provide a promising method for achieving economic viability in the production of hydrogen through water electrolysis.
期刊介绍:
The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry.
The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces.
The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis.
The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.