{"title":"Purity-dependent Lorenz number, electron hydrodynamics and electron-phonon coupling in WTe2","authors":"Wei Xie, Feng Yang, Liangcai Xu, Xiaokang Li, Zengwei Zhu, Kamran Behnia","doi":"10.1007/s11433-024-2404-0","DOIUrl":null,"url":null,"abstract":"<div><p>We present a study of electrical and thermal transport in Weyl semimetal WTe<sub>2</sub> down to 0.3 K. The Wiedemann-Franz law holds below 2 K and a downward deviation starts above. The deviation is more pronounced in cleaner samples, as expected in the hydrodynamic picture of electronic transport, where a fraction of electron-electron collisions conserve momentum. Phonons are the dominant heat carriers and their mean-free-path does not display a Knudsen minimum. This is presumably a consequence of weak anharmonicity, as indicated by the temperature dependence of the specific heat. Frequent momentum exchange between phonons and electrons leads to quantum oscillations of the phononic thermal conductivity. Bloch-Grüneisen picture of electron-phonon scattering breaks down at low temperature when Umklapp ph-ph collisions cease to be a sink for electronic flow of momentum. Comparison with semi-metallic Sb shows that normal ph-ph collisions are amplified by anharmonicity. In both semimetals, at cryogenic temperature, e-ph collisions degrade the phononic flow of energy but not the electronic flow of momentum.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"67 8","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-024-2404-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present a study of electrical and thermal transport in Weyl semimetal WTe2 down to 0.3 K. The Wiedemann-Franz law holds below 2 K and a downward deviation starts above. The deviation is more pronounced in cleaner samples, as expected in the hydrodynamic picture of electronic transport, where a fraction of electron-electron collisions conserve momentum. Phonons are the dominant heat carriers and their mean-free-path does not display a Knudsen minimum. This is presumably a consequence of weak anharmonicity, as indicated by the temperature dependence of the specific heat. Frequent momentum exchange between phonons and electrons leads to quantum oscillations of the phononic thermal conductivity. Bloch-Grüneisen picture of electron-phonon scattering breaks down at low temperature when Umklapp ph-ph collisions cease to be a sink for electronic flow of momentum. Comparison with semi-metallic Sb shows that normal ph-ph collisions are amplified by anharmonicity. In both semimetals, at cryogenic temperature, e-ph collisions degrade the phononic flow of energy but not the electronic flow of momentum.
期刊介绍:
Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of physics, mechanics and astronomy.
Brief reports present short reports in a timely manner of the latest important results.