{"title":"Theoretical Investigation of Propylene Epoxidation Using H2 and O2 Over Titanosilicate-Supported Au Catalysts","authors":"Yasutaka Hamada, Tomohisa Yonemori, Yuhki Ishimaru, Takashi Kawakami, Shusuke Yamanaka, Mitsutaka Okumura","doi":"10.1007/s10562-024-04783-y","DOIUrl":null,"url":null,"abstract":"<div><p>Titanosilicate-supported Au-cluster catalysts can be used to selectively synthesize propylene oxide from propylene using O<sub>2</sub> and H<sub>2</sub>. However, the details of the catalytic reaction mechanism have not yet been elucidated. Thus, the reaction mechanism was investigated using density functional theory calculations. The calculation results revealed that active Ti-OOH forms on the surface Ti site, which is active as an oxidant and acts as an anchorage site for Au nanoclusters. The rate-determining step of propylene oxide synthesis on Au/titanosilicate is O insertion into propylene, with an activation energy of 1.37 eV. The propylene involved in this reaction is activated by adsorption on Au nanoclusters. Moreover, it was also found that the formation of Ti-OOH on Au/titanosilicate requires an activation energy of 0.48 eV, while it is barrierless on Au/anatase-TiO<sub>2</sub>. However, the decomposition energy of Ti-OOH on Au/titanosilicate is −0.16 eV, which is smaller than that on Au/anatase-TiO<sub>2</sub> (−1.12 eV). The results indicate that Ti-OOH decomposes more readily on Au/titanosilicate than on Au/anatase-TiO<sub>2</sub> but is easily regenerated because the reaction energy is significantly smaller than that on Au/anatase-TiO<sub>2</sub>. Therefore, these calculations are qualitatively in good agreement with the experimental results for Au/titanosilicate, which exhibited high catalytic activity at high temperatures.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"154 11","pages":"5948 - 5954"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10562-024-04783-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-024-04783-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Titanosilicate-supported Au-cluster catalysts can be used to selectively synthesize propylene oxide from propylene using O2 and H2. However, the details of the catalytic reaction mechanism have not yet been elucidated. Thus, the reaction mechanism was investigated using density functional theory calculations. The calculation results revealed that active Ti-OOH forms on the surface Ti site, which is active as an oxidant and acts as an anchorage site for Au nanoclusters. The rate-determining step of propylene oxide synthesis on Au/titanosilicate is O insertion into propylene, with an activation energy of 1.37 eV. The propylene involved in this reaction is activated by adsorption on Au nanoclusters. Moreover, it was also found that the formation of Ti-OOH on Au/titanosilicate requires an activation energy of 0.48 eV, while it is barrierless on Au/anatase-TiO2. However, the decomposition energy of Ti-OOH on Au/titanosilicate is −0.16 eV, which is smaller than that on Au/anatase-TiO2 (−1.12 eV). The results indicate that Ti-OOH decomposes more readily on Au/titanosilicate than on Au/anatase-TiO2 but is easily regenerated because the reaction energy is significantly smaller than that on Au/anatase-TiO2. Therefore, these calculations are qualitatively in good agreement with the experimental results for Au/titanosilicate, which exhibited high catalytic activity at high temperatures.
期刊介绍:
Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.
The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.