{"title":"Comprehensive expression analysis of ERF transcription factors during chilling acclimation in Saintpaulia","authors":"Daichi Kurata, Kento Fukutomi, Kanae Kubo, Kenta Shirasawa, Hideki Hirakawa, Munetaka Hosokawa","doi":"10.1007/s10725-024-01181-7","DOIUrl":null,"url":null,"abstract":"<p>Saintpaulia (<i>Saintpaulia ionantha</i>), a popular indoor ornamental potted plant, is native to the highlands of Kenya and Tanzania where temperatures rarely fall below 4 °C. Chilling injury during cultivation and transportation is a major commercial problem in Saintpaulia. In this study, we investigated chilling acclimation in Saintpaulia ‘Kilauea’. Plants grown at 20 °C (14 h light/10 h dark) displayed rapid and severe chilling injury after 24-h exposure to 4 °C. However, chilling injury at 4 °C could be dramatically reduced by pre-treating the plants at 10 °C but not at 6 °C. From whole genome analysis, 161 ethylene-responsive factors (ERFs) were identified and classified into 12 clades according to existing reports. Among these ERFs, 43, 8, and 4 ERFs were upregulated at 12, 24, and 48 h after 10 °C treatment, respectively. Most of these ERFs had GCC box and/or DRE/CRT core motifs-like sequences in their upstream regions. Finally, we compared the expression of ERFs between the treatments for 24 h at 10 °C, an effective temperature for chilling acclimation, and 6 °C, an ineffective temperature. The results showed that the expression of all six ERFs we investigated was increased by the 10 °C treatment, but not or only barely increased by the 6 °C treatment. This study suggests that Saintpaulia, a subtropical plant, can acclimate to low temperatures and that ERF upregulation is involved in chilling acclimation.</p>","PeriodicalId":20412,"journal":{"name":"Plant Growth Regulation","volume":"51 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Growth Regulation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10725-024-01181-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Saintpaulia (Saintpaulia ionantha), a popular indoor ornamental potted plant, is native to the highlands of Kenya and Tanzania where temperatures rarely fall below 4 °C. Chilling injury during cultivation and transportation is a major commercial problem in Saintpaulia. In this study, we investigated chilling acclimation in Saintpaulia ‘Kilauea’. Plants grown at 20 °C (14 h light/10 h dark) displayed rapid and severe chilling injury after 24-h exposure to 4 °C. However, chilling injury at 4 °C could be dramatically reduced by pre-treating the plants at 10 °C but not at 6 °C. From whole genome analysis, 161 ethylene-responsive factors (ERFs) were identified and classified into 12 clades according to existing reports. Among these ERFs, 43, 8, and 4 ERFs were upregulated at 12, 24, and 48 h after 10 °C treatment, respectively. Most of these ERFs had GCC box and/or DRE/CRT core motifs-like sequences in their upstream regions. Finally, we compared the expression of ERFs between the treatments for 24 h at 10 °C, an effective temperature for chilling acclimation, and 6 °C, an ineffective temperature. The results showed that the expression of all six ERFs we investigated was increased by the 10 °C treatment, but not or only barely increased by the 6 °C treatment. This study suggests that Saintpaulia, a subtropical plant, can acclimate to low temperatures and that ERF upregulation is involved in chilling acclimation.
期刊介绍:
Plant Growth Regulation is an international journal publishing original articles on all aspects of plant growth and development. We welcome manuscripts reporting question-based research using hormonal, physiological, environmental, genetical, biophysical, developmental or molecular approaches to the study of plant growth regulation.
Emphasis is placed on papers presenting the results of original research. Occasional reviews on important topics will also be welcome. All contributions must be in English.