{"title":"ψ$$ \\psi $$‐Bernstein–Kantorovich operators","authors":"Hüseyin Aktuğlu, Mustafa Kara, Erdem Baytunç","doi":"10.1002/mma.10375","DOIUrl":null,"url":null,"abstract":"In this article, we introduce a modified class of Bernstein–Kantorovich operators depending on an integrable function and investigate their approximation properties. By choosing an appropriate function , the order of approximation of our operators to a function is at least as good as the classical Bernstein–Kantorovich operators on the interval . We compared the operators defined in this study not only with Bernstein–Kantorovich operators but also with some other Bernstein–Kantorovich type operators. In this paper, we also study the results on the uniform convergence and rate of convergence of these operators in terms of the first‐ and second‐order moduli of continuity, and we prove that our operators have shape‐preserving properties. Finally, some numerical examples which support the results obtained in this paper are provided.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we introduce a modified class of Bernstein–Kantorovich operators depending on an integrable function and investigate their approximation properties. By choosing an appropriate function , the order of approximation of our operators to a function is at least as good as the classical Bernstein–Kantorovich operators on the interval . We compared the operators defined in this study not only with Bernstein–Kantorovich operators but also with some other Bernstein–Kantorovich type operators. In this paper, we also study the results on the uniform convergence and rate of convergence of these operators in terms of the first‐ and second‐order moduli of continuity, and we prove that our operators have shape‐preserving properties. Finally, some numerical examples which support the results obtained in this paper are provided.