High-order Autler–Townes splitting in electrically tunable photonic molecules

IF 6.6 1区 物理与天体物理 Q1 OPTICS
Yihao Chen, Juntao Duan, Jin Li, Yan Chen, Jiewen Li, Jianan Duan, Xiaochuan Xu, Jiawei Wang
{"title":"High-order Autler–Townes splitting in electrically tunable photonic molecules","authors":"Yihao Chen, Juntao Duan, Jin Li, Yan Chen, Jiewen Li, Jianan Duan, Xiaochuan Xu, Jiawei Wang","doi":"10.1364/prj.525601","DOIUrl":null,"url":null,"abstract":"Whispering gallery mode optical microresonators represent a promising avenue for realizing optical analogs of coherent light–atom interactions, circumventing experimental complexities. All-optical analogs of Autler–Townes splitting have been widely demonstrated, harnessing coupled optical microresonators, also known as photonic molecules, wherein the strong coupling between resonant fields enables energy level splitting. Here, we report the characterizations of Autler–Townes splitting in waveguide-coupled microring dimers featuring mismatched sizes. By exploiting backscattering-induced coupling via Rayleigh and Mie scatterers in individual rings, high-order Autler–Townes splitting has been realized, yielding supermode hybridization in a multi-level system. Upon resonance detuning using an integrated phase shifter, intra-cavity coupling-induced splitting becomes almost indistinguishable at the zero-detuning point where the strong inter-cavity coupling counteracts the imbalance of backscattering strengths in individual rings. Through demonstrations on the maturing silicon photonics platform, our findings establish a framework of electrically tunable photonic molecules for coupling-mediated Autler–Townes splitting, offering promising prospects for on-chip signal generation and processing across classical and quantum regimes.","PeriodicalId":20048,"journal":{"name":"Photonics Research","volume":"8 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/prj.525601","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Whispering gallery mode optical microresonators represent a promising avenue for realizing optical analogs of coherent light–atom interactions, circumventing experimental complexities. All-optical analogs of Autler–Townes splitting have been widely demonstrated, harnessing coupled optical microresonators, also known as photonic molecules, wherein the strong coupling between resonant fields enables energy level splitting. Here, we report the characterizations of Autler–Townes splitting in waveguide-coupled microring dimers featuring mismatched sizes. By exploiting backscattering-induced coupling via Rayleigh and Mie scatterers in individual rings, high-order Autler–Townes splitting has been realized, yielding supermode hybridization in a multi-level system. Upon resonance detuning using an integrated phase shifter, intra-cavity coupling-induced splitting becomes almost indistinguishable at the zero-detuning point where the strong inter-cavity coupling counteracts the imbalance of backscattering strengths in individual rings. Through demonstrations on the maturing silicon photonics platform, our findings establish a framework of electrically tunable photonic molecules for coupling-mediated Autler–Townes splitting, offering promising prospects for on-chip signal generation and processing across classical and quantum regimes.
电可调光子分子中的高阶 Autler-Townes 分裂
拂晓画廊模式光学微谐振器是实现相干光原子相互作用光学类似物的一条大有可为的途径,它规避了实验的复杂性。利用耦合光学微谐振器(也称为光子分子),共振场之间的强耦合实现了能级分裂,Autler-Townes 分裂的全光学类似物已被广泛证实。在这里,我们报告了波导耦合微孔二聚体中的 Autler-Townes 分裂特性。通过利用单个环中瑞利和米氏散射体的反向散射诱导耦合,实现了高阶 Autler-Townes 分裂,在多级系统中产生了超模杂化。在使用集成移相器进行共振失谐时,腔内耦合诱导的分裂在零失谐点变得几乎无法区分,在零失谐点,腔间的强耦合抵消了单个环中反向散射强度的不平衡。通过在成熟的硅光子学平台上进行演示,我们的研究成果为耦合介导的 Autler-Townes 分裂建立了一个电可调光子分子框架,为经典和量子态的片上信号生成和处理提供了广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.60
自引率
5.30%
发文量
1325
期刊介绍: Photonics Research is a joint publishing effort of the OSA and Chinese Laser Press.It publishes fundamental and applied research progress in optics and photonics. Topics include, but are not limited to, lasers, LEDs and other light sources; fiber optics and optical communications; imaging, detectors and sensors; novel materials and engineered structures; optical data storage and displays; plasmonics; quantum optics; diffractive optics and guided optics; medical optics and biophotonics; ultraviolet and x-rays; terahertz technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信