T. A. Gimon, D. A. Elistratov, A. D. Zhelonkin, S. V. Lukashevich, S. O. Morozov, A. N. Shiplyuk
{"title":"A source of controlled nonstationary harmonic flow disturbances","authors":"T. A. Gimon, D. A. Elistratov, A. D. Zhelonkin, S. V. Lukashevich, S. O. Morozov, A. N. Shiplyuk","doi":"10.1134/S0869864324010049","DOIUrl":null,"url":null,"abstract":"<div><p>The flow in the vicinity of the source of controlled harmonic non-stationary perturbations of a gas medium, applicable for generating Görtler vortices in a compressible boundary layer, is studied. The source has a flat surface with linearly arranged cylindrical channels, leading alternately to two cavities of variable volume. Various configurations of the source are considered: with separate channel outlet openings and with a slit opening above them. Numerical simulation is performed in the Solid Works Flow Simulation package, and experimental measurement of gas velocity is realized by the PIV method. The developed source is shown to create periodic velocity fluctuations with an amplitude of up to 2 m/s at a frequency of 1 kHz near the surface. The shapes of the profiles of velocity normal to the surface along the source are close to sinusoidal in both time and space.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"31 1","pages":"37 - 48"},"PeriodicalIF":0.5000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermophysics and Aeromechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0869864324010049","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
The flow in the vicinity of the source of controlled harmonic non-stationary perturbations of a gas medium, applicable for generating Görtler vortices in a compressible boundary layer, is studied. The source has a flat surface with linearly arranged cylindrical channels, leading alternately to two cavities of variable volume. Various configurations of the source are considered: with separate channel outlet openings and with a slit opening above them. Numerical simulation is performed in the Solid Works Flow Simulation package, and experimental measurement of gas velocity is realized by the PIV method. The developed source is shown to create periodic velocity fluctuations with an amplitude of up to 2 m/s at a frequency of 1 kHz near the surface. The shapes of the profiles of velocity normal to the surface along the source are close to sinusoidal in both time and space.
期刊介绍:
The journal Thermophysics and Aeromechanics publishes original reports, reviews, and discussions on the following topics: hydrogasdynamics, heat and mass transfer, turbulence, means and methods of aero- and thermophysical experiment, physics of low-temperature plasma, and physical and technical problems of energetics. These topics are the prior fields of investigation at the Institute of Thermophysics and the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences (SB RAS), which are the founders of the journal along with SB RAS. This publication promotes an exchange of information between the researchers of Russia and the international scientific community.