{"title":"FOXA1 exacerbates LPS-induced vascular endothelial cell injury in sepsis by suppressing the transcription of NRP2","authors":"Chun Li, Likun Gou","doi":"10.1007/s10616-024-00647-w","DOIUrl":null,"url":null,"abstract":"<p>Endothelial dysfunction plays a critical role in the pathogenesis of sepsis. This study aims to explore the effect and mechanism of forkhead box A1 (FOXA1) on vascular endothelial cell injury in sepsis. Human umbilical vein endothelial cells (HUVECs) were stimulated by lipopolysaccharide (LPS). Lactate dehydrogenase (LDH) release, cell viability, apoptosis, and inflammatory factors including IL-1β, TNF-α, and IL-6 were measured using LDH kits, CCK-8 assay, flow cytometry, and ELISA respectively. RT-qPCR or Western blot determined the expression of FOXA1 or neuropilin-2 (NRP2) in cells. The binding between FOXA1 and NRP2 was confirmed using ChIP and dual-luciferase assays. Functional rescue experiments were performed to verify the effect of FOXA1 siRNA or NRP2 siRNA on cell injury. LPS treatment induced endothelial cell injury in a concentration-dependent manner. FOXA1 expression was elevated after LPS treatment. FOXA1 silencing reduced LDH release, enhanced cell viability, suppressed apoptosis, and declined inflammation factors. Mechanistically, FOXA1 bound to the NRP2 promoter to suppress the transcription of NRP2. Functional rescue experiments revealed that knockdown of NRP2 offset the protective effect of knockdown of FOXA1 on cell injury. In conclusion, FOXA1 exacerbates LPS-insulted endothelial cell injury in sepsis by repressing the transcription of NRP2.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"67 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-024-00647-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Endothelial dysfunction plays a critical role in the pathogenesis of sepsis. This study aims to explore the effect and mechanism of forkhead box A1 (FOXA1) on vascular endothelial cell injury in sepsis. Human umbilical vein endothelial cells (HUVECs) were stimulated by lipopolysaccharide (LPS). Lactate dehydrogenase (LDH) release, cell viability, apoptosis, and inflammatory factors including IL-1β, TNF-α, and IL-6 were measured using LDH kits, CCK-8 assay, flow cytometry, and ELISA respectively. RT-qPCR or Western blot determined the expression of FOXA1 or neuropilin-2 (NRP2) in cells. The binding between FOXA1 and NRP2 was confirmed using ChIP and dual-luciferase assays. Functional rescue experiments were performed to verify the effect of FOXA1 siRNA or NRP2 siRNA on cell injury. LPS treatment induced endothelial cell injury in a concentration-dependent manner. FOXA1 expression was elevated after LPS treatment. FOXA1 silencing reduced LDH release, enhanced cell viability, suppressed apoptosis, and declined inflammation factors. Mechanistically, FOXA1 bound to the NRP2 promoter to suppress the transcription of NRP2. Functional rescue experiments revealed that knockdown of NRP2 offset the protective effect of knockdown of FOXA1 on cell injury. In conclusion, FOXA1 exacerbates LPS-insulted endothelial cell injury in sepsis by repressing the transcription of NRP2.
期刊介绍:
The scope of the Journal includes:
1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products.
2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools.
3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research.
4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy.
5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.