Chee Huan Leow, Lip Huat Saw, Foon Siang Low, Yeong Jin King
{"title":"Investigations on the surface disinfection efficacy of far-UVC 222 nm germicidal irradiance device in a controlled environment and field test","authors":"Chee Huan Leow, Lip Huat Saw, Foon Siang Low, Yeong Jin King","doi":"10.1007/s40201-024-00918-w","DOIUrl":null,"url":null,"abstract":"<div><p>The Covid 19 pandemic has significantly affected the health, economy, and social impact of humanity. The continuous mutations of the virus variants have accelerated the demand for scientific research on disinfection techniques for a safer indoor environment. Among all the available surface disinfection techniques, ultraviolet germicidal irradiance at 254 nm wavelength has been proven for its disinfection efficacy; however, its usage is limited to unoccupied conditions due to the risk of ultraviolet exposure. This study investigated the efficacy of far-UVC-222 nm experimentally in both controlled environment and field setting. Staphylococcus epidermidis and Mycobacterium smegmatis were employed for surface disinfection in both the laboratory and a meeting room. Total plate count was used to determine the disinfection efficacy by a 20 W unfiltered far-UVC lamp. At 1.1 µW/cm<sup>2</sup> far-UVC irradiation, a 1-log<sub>10</sub> reduction of Staphylococcus epidermidis and Mycobacterium smegmatis contamination on tabletop can be achieved by 31.3 min and 101.8 min of far-UVC irradiation, respectively. Other pathogens of interest such as Staphylococcus aureus, Mycobacterium tuberculosis, Legionella pneumophila, SARS-CoV-2, and the Measles virus were also referred and compared in this study. This study carefully examined how far-UVC irradiation performs effectively for surface disinfection in a real meeting room setting. The results offer useful recommendations for alternatives to upper-room ultraviolet germicidal irradiance for continuous disinfection within the ultraviolet threshold limit value, with the goal of preventing the spread of any diseases in the future.</p></div>","PeriodicalId":628,"journal":{"name":"Journal of Environmental Health Science and Engineering","volume":"22 2","pages":"569 - 577"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Health Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40201-024-00918-w","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The Covid 19 pandemic has significantly affected the health, economy, and social impact of humanity. The continuous mutations of the virus variants have accelerated the demand for scientific research on disinfection techniques for a safer indoor environment. Among all the available surface disinfection techniques, ultraviolet germicidal irradiance at 254 nm wavelength has been proven for its disinfection efficacy; however, its usage is limited to unoccupied conditions due to the risk of ultraviolet exposure. This study investigated the efficacy of far-UVC-222 nm experimentally in both controlled environment and field setting. Staphylococcus epidermidis and Mycobacterium smegmatis were employed for surface disinfection in both the laboratory and a meeting room. Total plate count was used to determine the disinfection efficacy by a 20 W unfiltered far-UVC lamp. At 1.1 µW/cm2 far-UVC irradiation, a 1-log10 reduction of Staphylococcus epidermidis and Mycobacterium smegmatis contamination on tabletop can be achieved by 31.3 min and 101.8 min of far-UVC irradiation, respectively. Other pathogens of interest such as Staphylococcus aureus, Mycobacterium tuberculosis, Legionella pneumophila, SARS-CoV-2, and the Measles virus were also referred and compared in this study. This study carefully examined how far-UVC irradiation performs effectively for surface disinfection in a real meeting room setting. The results offer useful recommendations for alternatives to upper-room ultraviolet germicidal irradiance for continuous disinfection within the ultraviolet threshold limit value, with the goal of preventing the spread of any diseases in the future.
期刊介绍:
Journal of Environmental Health Science & Engineering is a peer-reviewed journal presenting timely research on all aspects of environmental health science, engineering and management.
A broad outline of the journal''s scope includes:
-Water pollution and treatment
-Wastewater treatment and reuse
-Air control
-Soil remediation
-Noise and radiation control
-Environmental biotechnology and nanotechnology
-Food safety and hygiene