Jinwei Tian, Chao Li, Zhifeng Qin, Yanwen Zhang, Qinglu Xu, Yuqi Zheng, Xiangyu Meng, Peng Zhao, Kaiwen Li, Suhong Zhao, Shan Zhong, Xinyu Hou, Xiang Peng, Yuxin Yang, Yu Liu, Songzhi Wu, Yidan Wang, Xiangwen Xi, Yanan Tian, Wenbo Qu, Na Sun, Fan Wang, Yan Wang, Jie Xiong, Xiaofang Ban, Taishi Yonetsu, Rocco Vergallo, Bo Zhang, Bo Yu, Zhao Wang
{"title":"Coronary artery calcification and cardiovascular outcome as assessed by intravascular OCT and artificial intelligence","authors":"Jinwei Tian, Chao Li, Zhifeng Qin, Yanwen Zhang, Qinglu Xu, Yuqi Zheng, Xiangyu Meng, Peng Zhao, Kaiwen Li, Suhong Zhao, Shan Zhong, Xinyu Hou, Xiang Peng, Yuxin Yang, Yu Liu, Songzhi Wu, Yidan Wang, Xiangwen Xi, Yanan Tian, Wenbo Qu, Na Sun, Fan Wang, Yan Wang, Jie Xiong, Xiaofang Ban, Taishi Yonetsu, Rocco Vergallo, Bo Zhang, Bo Yu, Zhao Wang","doi":"10.1364/boe.524946","DOIUrl":null,"url":null,"abstract":"Coronary artery calcification (CAC) is a marker of atherosclerosis and is thought to be associated with worse clinical outcomes. However, evidence from large-scale high-resolution imaging data is lacking. We proposed a novel deep learning method that can automatically identify and quantify CAC in massive intravascular OCT data trained using efficiently generated sparse labels. 1,106,291 OCT images from 1,048 patients were collected and utilized to train and evaluate the method. The Dice similarity coefficient for CAC segmentation and the accuracy for CAC classification are 0.693 and 0.932, respectively, close to human-level performance. Applying the method to 1259 ST-segment elevated myocardial infarction patients imaged with OCT, we found that patients with a greater extent and more severe calcification in the culprit vessels were significantly more likely to have major adverse cardiovascular and cerebrovascular events (MACCE) (p < 0.05), while the CAC in non-culprit vessels did not differ significantly between MACCE and non-MACCE groups.","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/boe.524946","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Coronary artery calcification (CAC) is a marker of atherosclerosis and is thought to be associated with worse clinical outcomes. However, evidence from large-scale high-resolution imaging data is lacking. We proposed a novel deep learning method that can automatically identify and quantify CAC in massive intravascular OCT data trained using efficiently generated sparse labels. 1,106,291 OCT images from 1,048 patients were collected and utilized to train and evaluate the method. The Dice similarity coefficient for CAC segmentation and the accuracy for CAC classification are 0.693 and 0.932, respectively, close to human-level performance. Applying the method to 1259 ST-segment elevated myocardial infarction patients imaged with OCT, we found that patients with a greater extent and more severe calcification in the culprit vessels were significantly more likely to have major adverse cardiovascular and cerebrovascular events (MACCE) (p < 0.05), while the CAC in non-culprit vessels did not differ significantly between MACCE and non-MACCE groups.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.