Fast Forward Modeling of Resistivity Method under Complex Topography Using Finite Element Method

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
Zhan Wang, Chang-Wei Li, Yu-Zeng Lv, Run-Lin Luo, Bo Cheng, Bo Li
{"title":"Fast Forward Modeling of Resistivity Method under Complex Topography Using Finite Element Method","authors":"Zhan Wang, Chang-Wei Li, Yu-Zeng Lv, Run-Lin Luo, Bo Cheng, Bo Li","doi":"10.1007/s11770-024-1054-2","DOIUrl":null,"url":null,"abstract":"<p>A parallel finite element scheme for 3D resistivity method forward modeling is introduced in this article. The domain decomposition algorithm, along with a message passing interface, is used to implement parallelism. The computational domain is divided into subdomains, and mesh partitioning is combined with load balancing. Unstructured meshes and local mesh refinement strategies are used to realize high precision for complex topography models. Furthermore, an improved linear solver for multi-electrode resistivity method modeling is adopted. Recycling preconditioned conjugate gradient, which is a linear solver, is based on the similarity of linear systems between point sources. The multiple right-hand-side linear systems corresponding to different point source positions are constructed, and the accelerated convergence is obtained through recycling subspace using the linear solver. The computational accuracy and efficiency of the forward scheme for complex topography models are verified using the numerical test results.</p>","PeriodicalId":55500,"journal":{"name":"Applied Geophysics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11770-024-1054-2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

A parallel finite element scheme for 3D resistivity method forward modeling is introduced in this article. The domain decomposition algorithm, along with a message passing interface, is used to implement parallelism. The computational domain is divided into subdomains, and mesh partitioning is combined with load balancing. Unstructured meshes and local mesh refinement strategies are used to realize high precision for complex topography models. Furthermore, an improved linear solver for multi-electrode resistivity method modeling is adopted. Recycling preconditioned conjugate gradient, which is a linear solver, is based on the similarity of linear systems between point sources. The multiple right-hand-side linear systems corresponding to different point source positions are constructed, and the accelerated convergence is obtained through recycling subspace using the linear solver. The computational accuracy and efficiency of the forward scheme for complex topography models are verified using the numerical test results.

用有限元法快速建立复杂地形下的电阻率法模型
本文介绍了一种用于三维电阻率法正向建模的并行有限元方案。采用域分解算法和消息传递接口来实现并行性。计算域被划分为多个子域,网格划分与负载平衡相结合。非结构网格和局部网格细化策略用于实现复杂地形模型的高精度。此外,还采用了用于多电极电阻率法建模的改进线性求解器。回收预处理共轭梯度是一种线性求解器,它基于点源之间线性系统的相似性。构建了与不同点源位置相对应的多个右侧线性系统,并利用线性求解器通过回收子空间获得加速收敛。数值测试结果验证了复杂地形模型前向方案的计算精度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Geophysics
Applied Geophysics 地学-地球化学与地球物理
CiteScore
1.50
自引率
14.30%
发文量
912
审稿时长
2 months
期刊介绍: The journal is designed to provide an academic realm for a broad blend of academic and industry papers to promote rapid communication and exchange of ideas between Chinese and world-wide geophysicists. The publication covers the applications of geoscience, geophysics, and related disciplines in the fields of energy, resources, environment, disaster, engineering, information, military, and surveying.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信