Screening of heat stress-tolerant weedy rice and SNP identification of heat-tolerance-related genes

IF 1.7 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Mainul Hasan Sarker, Md Hamed Hussain, Ting Xiang Neik, Md Zobaer Hasan, Wei Yee Wee, Hock Siew Tan, Swee-suak Ko, Beng-Kah Song
{"title":"Screening of heat stress-tolerant weedy rice and SNP identification of heat-tolerance-related genes","authors":"Mainul Hasan Sarker, Md Hamed Hussain, Ting Xiang Neik, Md Zobaer Hasan, Wei Yee Wee, Hock Siew Tan, Swee-suak Ko, Beng-Kah Song","doi":"10.1007/s11816-024-00920-6","DOIUrl":null,"url":null,"abstract":"<p>Rice, a staple crop that feeds more than one-third of the world’s population, encounters a wide range of biotic and abiotic stresses due to climate change. Rising temperature is one of the significant abiotic stresses affecting rice productivity worldwide. The development of heat-tolerant rice cultivars is critical in this regard. Weedy rice could potentially serve as a natural resource for genes conferring agronomically important traits beneficial to cultivated rice. However, heat tolerance in both cultivated and weedy rice is still understudied. This study screened a set of 180 weedy rice accessions for heat stress tolerance and further characterised them using genome-wide single-nucleotide polymorphisms (SNPs) analysis. Five heat-tolerant (HT) accessions (MU244, MU235, MU249, MU260 and MU237), along with five heat-susceptible (HS) accessions (MU100, MU114, MU264, MU251 and MU005), were subjected to relative electrical conductivity (REC) test and reactive oxidative species assay (ROS). These tests verified that the five HT accessions performed better under heat stress than their HS counterparts. In addition, whole-genome sequences of three HT (MU235, MU237 and MU066) and four HS (MU100, MU114, MU022 and MU005) accessions were selected for the genome-wide SNPs comparison, revealing substantial amino acid variation in the heat-tolerance-related genes between the HT and HS rice groups. The proposed genes and genome-wide SNP markers may help rice breeders better understand how different rice cultivars respond to heat stress.</p>","PeriodicalId":20216,"journal":{"name":"Plant Biotechnology Reports","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Reports","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11816-024-00920-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Rice, a staple crop that feeds more than one-third of the world’s population, encounters a wide range of biotic and abiotic stresses due to climate change. Rising temperature is one of the significant abiotic stresses affecting rice productivity worldwide. The development of heat-tolerant rice cultivars is critical in this regard. Weedy rice could potentially serve as a natural resource for genes conferring agronomically important traits beneficial to cultivated rice. However, heat tolerance in both cultivated and weedy rice is still understudied. This study screened a set of 180 weedy rice accessions for heat stress tolerance and further characterised them using genome-wide single-nucleotide polymorphisms (SNPs) analysis. Five heat-tolerant (HT) accessions (MU244, MU235, MU249, MU260 and MU237), along with five heat-susceptible (HS) accessions (MU100, MU114, MU264, MU251 and MU005), were subjected to relative electrical conductivity (REC) test and reactive oxidative species assay (ROS). These tests verified that the five HT accessions performed better under heat stress than their HS counterparts. In addition, whole-genome sequences of three HT (MU235, MU237 and MU066) and four HS (MU100, MU114, MU022 and MU005) accessions were selected for the genome-wide SNPs comparison, revealing substantial amino acid variation in the heat-tolerance-related genes between the HT and HS rice groups. The proposed genes and genome-wide SNP markers may help rice breeders better understand how different rice cultivars respond to heat stress.

Abstract Image

耐热胁迫杂交水稻的筛选及耐热相关基因的 SNP 鉴定
水稻是养活全球三分之一以上人口的主食作物,由于气候变化,水稻面临着各种生物和非生物压力。温度上升是影响全球水稻产量的重要非生物胁迫之一。在这方面,培育耐热水稻品种至关重要。杂交水稻有可能成为赋予栽培水稻重要农艺性状基因的天然资源。然而,对栽培稻和杂草稻的耐热性研究仍然不足。本研究筛选了 180 个杂交水稻品种的耐热胁迫性状,并利用全基因组单核苷酸多态性(SNPs)分析对其进行了进一步鉴定。对五个耐热(HT)品种(MU244、MU235、MU249、MU260 和 MU237)和五个感热(HS)品种(MU100、MU114、MU264、MU251 和 MU005)进行了相对电导率(REC)测试和活性氧化物种(ROS)测定。这些测试证实,5个HT品种在热胁迫下的表现优于HS品种。此外,还选择了三个 HT(MU235、MU237 和 MU066)和四个 HS(MU100、MU114、MU022 和 MU005)基因组序列进行全基因组 SNPs 比较,结果显示 HT 和 HS 水稻组之间耐热相关基因的氨基酸差异很大。所提出的基因和全基因组 SNP 标记可帮助水稻育种者更好地了解不同水稻品种如何应对热胁迫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Biotechnology Reports
Plant Biotechnology Reports 生物-生物工程与应用微生物
CiteScore
4.10
自引率
4.20%
发文量
72
审稿时长
>12 weeks
期刊介绍: Plant Biotechnology Reports publishes original, peer-reviewed articles dealing with all aspects of fundamental and applied research in the field of plant biotechnology, which includes molecular biology, genetics, biochemistry, cell and tissue culture, production of secondary metabolites, metabolic engineering, genomics, proteomics, and metabolomics. Plant Biotechnology Reports emphasizes studies on plants indigenous to the Asia-Pacific region and studies related to commercialization of plant biotechnology. Plant Biotechnology Reports does not exclude studies on lower plants including algae and cyanobacteria if studies are carried out within the aspects described above.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信