Deep multiband photodetectors enabled by reconfigurable band alignment in van der Waals heterostructures

IF 8.4 1区 物理与天体物理 Q1 OPTICS
Optica Pub Date : 2024-04-29 DOI:10.1364/optica.519888
Jinjin Wang, Xiao Fu, Xiaolong Chen, Guanyu Liu, Qixiao Zhao, Hangyu Xu, Fansheng Chen, Jianbin Xu, Sang-Hoon Bae, Jiadong Zhou, Lixin Dong, Wenzhong Bao, Zengfeng Di, Jinshui Miao, Weida Hu
{"title":"Deep multiband photodetectors enabled by reconfigurable band alignment in van der Waals heterostructures","authors":"Jinjin Wang, Xiao Fu, Xiaolong Chen, Guanyu Liu, Qixiao Zhao, Hangyu Xu, Fansheng Chen, Jianbin Xu, Sang-Hoon Bae, Jiadong Zhou, Lixin Dong, Wenzhong Bao, Zengfeng Di, Jinshui Miao, Weida Hu","doi":"10.1364/optica.519888","DOIUrl":null,"url":null,"abstract":"Multiband recognition technology is being extensively investigated because of the increasing demand for on-chip, multifunctional, and sensitive devices that can distinguish coincident spectral information. Most existing multiband imagers use large arrays of photodetectors to capture different spectral components, from which their spectrum is reconstructed. A single device embedded with a convolutional neural network (CNN) capable of recognizing multiband photons allows the footprints of multiband recognition chips to be scaled down while achieving spectral resolution approaching that of benchtop systems. Here, we report a multiple and broadband photodetector based on 2D/3D van der Waals p/n/p heterostructures [p-germanium (Ge)/n-molybdenum disulfide (MoS<jats:sub>2</jats:sub>)/p-black phosphorus (bP)] with an electrically tunable transport-mediated spectral photoresponse. The devices show bias-tunable multiband photodetection (visible, short-wave infrared, and mid-wave infrared photoresponse). Further combination with the CNN algorithm enables crosstalk suppression of photoresponse to different wavelengths and high-accuracy blackbody radiation temperature recognition. The deep multiband photodetection strategies demonstrated in this work may open pathways towards the integration of multiband vision for application in on-chip neural network perception.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"26 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/optica.519888","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Multiband recognition technology is being extensively investigated because of the increasing demand for on-chip, multifunctional, and sensitive devices that can distinguish coincident spectral information. Most existing multiband imagers use large arrays of photodetectors to capture different spectral components, from which their spectrum is reconstructed. A single device embedded with a convolutional neural network (CNN) capable of recognizing multiband photons allows the footprints of multiband recognition chips to be scaled down while achieving spectral resolution approaching that of benchtop systems. Here, we report a multiple and broadband photodetector based on 2D/3D van der Waals p/n/p heterostructures [p-germanium (Ge)/n-molybdenum disulfide (MoS2)/p-black phosphorus (bP)] with an electrically tunable transport-mediated spectral photoresponse. The devices show bias-tunable multiband photodetection (visible, short-wave infrared, and mid-wave infrared photoresponse). Further combination with the CNN algorithm enables crosstalk suppression of photoresponse to different wavelengths and high-accuracy blackbody radiation temperature recognition. The deep multiband photodetection strategies demonstrated in this work may open pathways towards the integration of multiband vision for application in on-chip neural network perception.
范德瓦尔斯异质结构中的可重构带排列实现深层多带光电探测器
由于对能够分辨重合光谱信息的片上多功能灵敏设备的需求日益增长,多波段识别技术正得到广泛研究。现有的多波段成像仪大多使用大型光电探测器阵列来捕捉不同的光谱成分,并从中重建光谱。嵌入了能够识别多波段光子的卷积神经网络(CNN)的单个设备可以缩小多波段识别芯片的占地面积,同时实现接近台式系统的光谱分辨率。在这里,我们报告了一种基于二维/三维范德华对/对/对异质结构[对锗(Ge)/对二硫化钼(MoS2)/对黑磷(bP)]的多重宽带光探测器,它具有电可调传输介导的光谱光响应。这些器件显示了可偏置调节的多波段光探测(可见光、短波红外和中波红外光响应)。进一步与 CNN 算法相结合,可实现不同波长光响应的串扰抑制和高精度黑体辐射温度识别。这项工作中展示的深度多波段光检测策略可能会为集成多波段视觉应用于片上神经网络感知开辟道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optica
Optica OPTICS-
CiteScore
19.70
自引率
2.90%
发文量
191
审稿时长
2 months
期刊介绍: Optica is an open access, online-only journal published monthly by Optica Publishing Group. It is dedicated to the rapid dissemination of high-impact peer-reviewed research in the field of optics and photonics. The journal provides a forum for theoretical or experimental, fundamental or applied research to be swiftly accessed by the international community. Optica is abstracted and indexed in Chemical Abstracts Service, Current Contents/Physical, Chemical & Earth Sciences, and Science Citation Index Expanded.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信