{"title":"Isolation and characterization of amorphous nanocellulose producing Comamonas terrae YSZ sp. from pineapple wastes","authors":"Yamunathevi Mathivanan, Shafinaz Shahir, Zaharah Ibrahim, Nik Ahmad Nizam Nik Malek","doi":"10.1007/s00289-024-05433-4","DOIUrl":null,"url":null,"abstract":"<div><p>Bacterial nanocellulose (BNC) currently has emerged as a potential biopolymer that can be used for various industrial applications. However, the major concern is the limitation of the bacteria used for BNC production on a larger scale. This study aimed to isolate and identify potential nanocellulose-producing bacteria from pineapple wastes. In this study, 11 isolates were screened and the F1 isolate, which produced the highest BNC yield was chosen for 16S rRNA sequencing. Based on the 16S rRNA analysis, <i>Comamonas terrae</i> YSZ sp. (OQ592726.1) was the best BNC producer with 1.68 ± 0.19 g/L yield. The physicochemical characteristics from FESEM analysis revealed that <i>C. terrae</i> YSZ sp. produced amorphous BNC, with fewer nanofibrils. The XRD analysis showed that the BNC produced had a 19.3% of crystallinity index. To the best of our knowledge, this is the first work reporting the isolation of <i>C. terrae</i> YSZ sp. from pineapple wastes with more amorphous regions providing an interesting alternative for heavy metal removal potentials.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":737,"journal":{"name":"Polymer Bulletin","volume":"81 17","pages":"15775 - 15789"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Bulletin","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00289-024-05433-4","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial nanocellulose (BNC) currently has emerged as a potential biopolymer that can be used for various industrial applications. However, the major concern is the limitation of the bacteria used for BNC production on a larger scale. This study aimed to isolate and identify potential nanocellulose-producing bacteria from pineapple wastes. In this study, 11 isolates were screened and the F1 isolate, which produced the highest BNC yield was chosen for 16S rRNA sequencing. Based on the 16S rRNA analysis, Comamonas terrae YSZ sp. (OQ592726.1) was the best BNC producer with 1.68 ± 0.19 g/L yield. The physicochemical characteristics from FESEM analysis revealed that C. terrae YSZ sp. produced amorphous BNC, with fewer nanofibrils. The XRD analysis showed that the BNC produced had a 19.3% of crystallinity index. To the best of our knowledge, this is the first work reporting the isolation of C. terrae YSZ sp. from pineapple wastes with more amorphous regions providing an interesting alternative for heavy metal removal potentials.
期刊介绍:
"Polymer Bulletin" is a comprehensive academic journal on polymer science founded in 1988. It was founded under the initiative of the late Mr. Wang Baoren, a famous Chinese chemist and educator. This journal is co-sponsored by the Chinese Chemical Society, the Institute of Chemistry, and the Chinese Academy of Sciences and is supervised by the China Association for Science and Technology. It is a core journal and is publicly distributed at home and abroad.
"Polymer Bulletin" is a monthly magazine with multiple columns, including a project application guide, outlook, review, research papers, highlight reviews, polymer education and teaching, information sharing, interviews, polymer science popularization, etc. The journal is included in the CSCD Chinese Science Citation Database. It serves as the source journal for Chinese scientific and technological paper statistics and the source journal of Peking University's "Overview of Chinese Core Journals."