Cristian Antoine, Diego Vilches, Paulo Preuss, Felipe A. Angel
{"title":"Effect of Alkyl Side Chains in BDT and 2D-BDT Small-Molecules as Donor Materials for Vacuum-Processed Organic Photovoltaic Devices","authors":"Cristian Antoine, Diego Vilches, Paulo Preuss, Felipe A. Angel","doi":"10.1002/ente.202400747","DOIUrl":null,"url":null,"abstract":"<p>Nine molecules based on benzo[1,2-b:4,5-b′]dithiophene (BDT) and 2D-BDT derivatives are studied as donor materials in organic photovoltaic (OPV) devices fabricated by thermal evaporation, aiming to understand how different alkyl lateral substituents affect the molecular packing, the charge transport, and, subsequently, the device performance. Synthesis of the molecules is followed by a comprehensive characterization using thermal and differential scanning calorimetry analyses, which confirm their thermal stability and suitability for vacuum-processed OPV devices. Thermal analysis also demonstrates a strong correlation between the melting point reduction of the molecules and the disorder caused by the alkyl chains. As the synthesized molecules present similar optical properties, the differences in the device performance are caused by the different substituents. BDT derivatives with low melting point temperatures produce reduced current density, hole mobility, and overall device performance, which are attributed to poor molecular packing. Additionally, energy-dispersive X-ray spectroscopy analysis suggests phase separation with fullerene, further impacting the efficiency of the devices. The findings indicate that the photovoltaic performance of BDT-based molecules can be modulated by avoiding aliphatic substituents, providing a strategy for the design of more efficient materials, with thermal evaporation as an ideal method to evaluate and decouple molecular packing from solubility.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"12 10","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202400747","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Nine molecules based on benzo[1,2-b:4,5-b′]dithiophene (BDT) and 2D-BDT derivatives are studied as donor materials in organic photovoltaic (OPV) devices fabricated by thermal evaporation, aiming to understand how different alkyl lateral substituents affect the molecular packing, the charge transport, and, subsequently, the device performance. Synthesis of the molecules is followed by a comprehensive characterization using thermal and differential scanning calorimetry analyses, which confirm their thermal stability and suitability for vacuum-processed OPV devices. Thermal analysis also demonstrates a strong correlation between the melting point reduction of the molecules and the disorder caused by the alkyl chains. As the synthesized molecules present similar optical properties, the differences in the device performance are caused by the different substituents. BDT derivatives with low melting point temperatures produce reduced current density, hole mobility, and overall device performance, which are attributed to poor molecular packing. Additionally, energy-dispersive X-ray spectroscopy analysis suggests phase separation with fullerene, further impacting the efficiency of the devices. The findings indicate that the photovoltaic performance of BDT-based molecules can be modulated by avoiding aliphatic substituents, providing a strategy for the design of more efficient materials, with thermal evaporation as an ideal method to evaluate and decouple molecular packing from solubility.
期刊介绍:
Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy.
This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g.,
new concepts of energy generation and conversion;
design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers;
improvement of existing processes;
combination of single components to systems for energy generation;
design of systems for energy storage;
production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels;
concepts and design of devices for energy distribution.