{"title":"Preliminary investigations of microbiologically influenced corrosion of 304 stainless steel by anaerobic Clostridioides difficile biofilm","authors":"Lingjun Xu , Adnan Khan , Shaohua Wang , Pruch Kijkla , Sith Kumseranee , Suchada Punpruk , Tingyue Gu","doi":"10.1016/j.ibiod.2024.105871","DOIUrl":null,"url":null,"abstract":"<div><p><em>Clostridioides difficile</em> is a pathogenic anaerobe that potentially causes microbiologically influenced corrosion (MIC). Coupons of 304 stainless steel (SS) were incubated with <em>C. difficile</em> in deoxygenated brain heart infusion supplement medium. After a 7-d incubation, <em>C. difficile</em> biofilms were observed on the 304 SS coupon surfaces. The sessile cell count on 304 SS coupons were (1.9 ± 0.5) × 10<sup>7</sup> cells/cm<sup>2</sup>. It was found that this high-grade SS did not suffer measurable corrosion weight loss and pitting. X65 carbon steel was used to verify <em>C. difficile</em> bio-corrosivity. A 7-d weight loss of 0.9 ± 0.2 mg/cm<sup>2</sup> was found on X65 coupons with the same incubation condition, which manifested as uniform corrosion. 13%Cr steel, also known as 420 SS which is a low-grade SS that is prone to pitting, was used to verify pitting by <em>C. difficile</em>. A 15.2 μm pit was observed after 26 d of incubation. Electrochemical tests were conducted in a 10 mL biofilm/MIC test kit. The electrochemical analysis of electron mediator injection indicated that MIC of 304 SS by <em>C. difficile</em> belongs to extracellular electron transfer-MIC. A 100 ppm (w/w) tetrakis (hydroxymethyl)phosphonium sulfate (a green biocide) injection test proved that it is a suitable disinfectant for <em>C. difficile</em>.</p></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"194 ","pages":"Article 105871"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830524001422","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Clostridioides difficile is a pathogenic anaerobe that potentially causes microbiologically influenced corrosion (MIC). Coupons of 304 stainless steel (SS) were incubated with C. difficile in deoxygenated brain heart infusion supplement medium. After a 7-d incubation, C. difficile biofilms were observed on the 304 SS coupon surfaces. The sessile cell count on 304 SS coupons were (1.9 ± 0.5) × 107 cells/cm2. It was found that this high-grade SS did not suffer measurable corrosion weight loss and pitting. X65 carbon steel was used to verify C. difficile bio-corrosivity. A 7-d weight loss of 0.9 ± 0.2 mg/cm2 was found on X65 coupons with the same incubation condition, which manifested as uniform corrosion. 13%Cr steel, also known as 420 SS which is a low-grade SS that is prone to pitting, was used to verify pitting by C. difficile. A 15.2 μm pit was observed after 26 d of incubation. Electrochemical tests were conducted in a 10 mL biofilm/MIC test kit. The electrochemical analysis of electron mediator injection indicated that MIC of 304 SS by C. difficile belongs to extracellular electron transfer-MIC. A 100 ppm (w/w) tetrakis (hydroxymethyl)phosphonium sulfate (a green biocide) injection test proved that it is a suitable disinfectant for C. difficile.
期刊介绍:
International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.