Maximilian Dinkel, Carolin M Geitner, Gil Robalo Rei, Jonas Nitzler, Wolfgang A Wall
{"title":"Solving Bayesian inverse problems with expensive likelihoods using constrained Gaussian processes and active learning","authors":"Maximilian Dinkel, Carolin M Geitner, Gil Robalo Rei, Jonas Nitzler, Wolfgang A Wall","doi":"10.1088/1361-6420/ad5eb4","DOIUrl":null,"url":null,"abstract":"Solving inverse problems using Bayesian methods can become prohibitively expensive when likelihood evaluations involve complex and large scale numerical models. A common approach to circumvent this issue is to approximate the forward model or the likelihood function with a surrogate model. But also there, due to limited computational resources, only a few training points are available in many practically relevant cases. Thus, it can be advantageous to model the additional uncertainties of the surrogate in order to incorporate the epistemic uncertainty due to limited data. In this paper, we develop a novel approach to approximate the log likelihood by a constrained Gaussian process based on prior knowledge about its boundedness. This improves the accuracy of the surrogate approximation without increasing the number of training samples. Additionally, we introduce a formulation to integrate the epistemic uncertainty due to limited training points into the posterior density approximation. This is combined with a state of the art active learning strategy for selecting training points, which allows to approximate posterior densities in higher dimensions very efficiently. We demonstrate the fast convergence of our approach for a benchmark problem and infer a random field that is discretized by 30 parameters using only about 1000 model evaluations. In a practically relevant example, the parameters of a reduced lung model are calibrated based on flow observations over time and voltage measurements from a coupled electrical impedance tomography simulation.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"205 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad5eb4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Solving inverse problems using Bayesian methods can become prohibitively expensive when likelihood evaluations involve complex and large scale numerical models. A common approach to circumvent this issue is to approximate the forward model or the likelihood function with a surrogate model. But also there, due to limited computational resources, only a few training points are available in many practically relevant cases. Thus, it can be advantageous to model the additional uncertainties of the surrogate in order to incorporate the epistemic uncertainty due to limited data. In this paper, we develop a novel approach to approximate the log likelihood by a constrained Gaussian process based on prior knowledge about its boundedness. This improves the accuracy of the surrogate approximation without increasing the number of training samples. Additionally, we introduce a formulation to integrate the epistemic uncertainty due to limited training points into the posterior density approximation. This is combined with a state of the art active learning strategy for selecting training points, which allows to approximate posterior densities in higher dimensions very efficiently. We demonstrate the fast convergence of our approach for a benchmark problem and infer a random field that is discretized by 30 parameters using only about 1000 model evaluations. In a practically relevant example, the parameters of a reduced lung model are calibrated based on flow observations over time and voltage measurements from a coupled electrical impedance tomography simulation.
期刊介绍:
An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution.
As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others.
The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.