{"title":"Structure Optimization for Cellulose‐Based Separator through Fiber Size Regulation for High Performance Lithium Metal Batteries","authors":"Zhenghao Li, Zongtao Lu, Tianyou Zhang, Bingsen Qin, Wei Yan, Li Dong, Jie Dong, Chunxiang Ma, Zhiping Chen, Wei Li, Yun Zheng, Jiujun Zhang","doi":"10.1002/batt.202400435","DOIUrl":null,"url":null,"abstract":"Cellulose‐based separator exhibits excellent electrolyte affinity, thermal stability, and mechanical strength, which acts as a promising alternative to commercial polyolefin separators in lithium metal batteries (LMBs). Fiber size in cellulose‐based separators plays a crucial role in determining their physicochemical structure and mechanical strength, as well as the electrochemical performance of corresponding LMBs. Herein, the fiber size in cellulose‐based separators was first time regulated to optimize their mechanical stability and the related battery performance. The influences of fiber size in the separator on chemical structure, mechanical properties, surface morphology, electrochemical behavior were investigated in detail, in which the underlying mechanism between separator structure and the related performance was elucidated. As a result, the separator optimized by fiber size regulation exhibited excellent thermal stability under 180 °C, good tensile strengths of 6.0 MPa and Young's moduli of 315.9 MPa, superior room temperature ionic conductivity of 1.87 mS cm‐1, as well as significantly improved electrochemical performance of corresponding batteries. It can be concluded that structure optimization for cellulose‐based separator through fiber size regulation is an effective and indispensable approach towards high safety and high performance LMBs.","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"73 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/batt.202400435","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Cellulose‐based separator exhibits excellent electrolyte affinity, thermal stability, and mechanical strength, which acts as a promising alternative to commercial polyolefin separators in lithium metal batteries (LMBs). Fiber size in cellulose‐based separators plays a crucial role in determining their physicochemical structure and mechanical strength, as well as the electrochemical performance of corresponding LMBs. Herein, the fiber size in cellulose‐based separators was first time regulated to optimize their mechanical stability and the related battery performance. The influences of fiber size in the separator on chemical structure, mechanical properties, surface morphology, electrochemical behavior were investigated in detail, in which the underlying mechanism between separator structure and the related performance was elucidated. As a result, the separator optimized by fiber size regulation exhibited excellent thermal stability under 180 °C, good tensile strengths of 6.0 MPa and Young's moduli of 315.9 MPa, superior room temperature ionic conductivity of 1.87 mS cm‐1, as well as significantly improved electrochemical performance of corresponding batteries. It can be concluded that structure optimization for cellulose‐based separator through fiber size regulation is an effective and indispensable approach towards high safety and high performance LMBs.
期刊介绍:
Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.